期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一类非线性系统平稳周期稳定解分析
1
作者 余平洋 《南昌大学学报(理科版)》 CAS 北大核心 2020年第6期529-533,共5页
分析一类由对合Cauchy-Hadamard型微分方程构成的非线性系统的平稳周期稳定解,对提高非线性控制系统的参数自整定性和控制稳定性具有数学理论基础意义。传统的稳定解分析方法一直存在分析精度低、效率差的问题。提出采用对合Cauchy-Hada... 分析一类由对合Cauchy-Hadamard型微分方程构成的非线性系统的平稳周期稳定解,对提高非线性控制系统的参数自整定性和控制稳定性具有数学理论基础意义。传统的稳定解分析方法一直存在分析精度低、效率差的问题。提出采用对合Cauchy-Hadamard型非线性方程进行非线性系统的拟合,在齐次Sobolev空间中采用能量超临界波动的广义伪随机特征分析方法进行非线性系统平稳周期稳定解的微分逼近,在马尔尼数链中采用五次波动方程进行平稳周期稳定解的Lyapunove泛函,求得具有平稳周期稳定解的收敛性条件,最后进行了平稳周期解的稳定性和渐进收敛性证明。实验结果表明,该类非线性系统在非确定性凸优化条件下具有平稳周期稳定解,能有效满足稳定性控制需求。 展开更多
关键词 非线性系统 平稳周期稳定解 泛函 收敛性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部