期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
马尔可夫过程密度核估计的随机加权法
1
作者 ry立 《南京大学学报(数学半年刊)》 CAS 2003年第2期253-258,共6页
设{Xn,n≥1}是一严平稳马尔可夫过程,并且具有未知的密度函数f(x).我们用随机加权统计量对f(x)进行估计,并且讨论了随机加权估计的均方相合性,可积均方相合性等.
关键词 平稳马尔可夫过程 随机加权法 密度核估计 随机加权估计
下载PDF
接种和迁移的多斑块传染病模型生存性分析 被引量:1
2
作者 黄裕淞 魏凤英 《福州大学学报(自然科学版)》 CAS 北大核心 2022年第4期452-458,共7页
研究一类具有接种和迁移的多斑块SIV传染病模型的动力学行为.在适当的条件下,证明该模型存在平稳的马尔可夫过程,也得到感染者数量趋于灭绝的结果.最后,数值模拟验证了主要结果.
关键词 传染病模型 扰动 迁移 灭绝 平稳马尔可夫过程
下载PDF
Quasi-stationarity and quasi-ergodicity of general Markov processes
3
作者 ZHANG JunFei LI ShouMei SONG RenMing 《Science China Mathematics》 SCIE 2014年第10期2013-2024,共12页
In this paper,we study the quasi-stationarity and quasi-ergodicity of general Markov processes.We show,among other things,that if X is a standard Markov process admitting a dual with respect to a finite measure m and ... In this paper,we study the quasi-stationarity and quasi-ergodicity of general Markov processes.We show,among other things,that if X is a standard Markov process admitting a dual with respect to a finite measure m and if X admits a strictly positive continuous transition density p(t,x,y)(with respect to m)which is bounded in(x,y)for every t>0,then X has a unique quasi-stationary distribution and a unique quasi-ergodic distribution.We also present several classes of Markov processes satisfying the above conditions. 展开更多
关键词 Markov processes quasi-stationary distributions mean ratio quasi-stationary distributions quasiergodicity distributions
原文传递
PREDICTIVE MODELS AND GENERATIVE COMPLEXITY
4
作者 Wolfgang LHR 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第1期30-45,共16页
The causal states of computational mechanics define the minimal sufficient memory for a given discrete stationary stochastic process. Their entropy is an important complexity measure called statistical complexity (or... The causal states of computational mechanics define the minimal sufficient memory for a given discrete stationary stochastic process. Their entropy is an important complexity measure called statistical complexity (or true measure complexity). They induce the s-machine, which is a hidden Markov model (HMM) generating the process. But it is not the minimal one, although generative HMMs also have a natural predictive interpretation. This paper gives a mathematical proof of the idea that the s-machine is the minimal HMM with an additional (partial) determinism condition. Minimal internal state entropy of a generative HMM is in analogy to statistical complexity called generative complexity. This paper also shows that generative complexity depends on the process in a nice way. It is, as a function of the process, lower semi-continuous (w.r.t. weak-, topology), concave, and behaves nice under ergodic decomposition of the process. 展开更多
关键词 Causal states COMPLEXITY s-machine generative complexity HMM partially deterministicHMM predictive model statistical.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部