There is a remarkable difference in stress distribution between a specimen and a plate removed from the specimen.The plate presents a uniform stress distribution whereas the specimen presents a non-uniform stress dist...There is a remarkable difference in stress distribution between a specimen and a plate removed from the specimen.The plate presents a uniform stress distribution whereas the specimen presents a non-uniform stress distribution.Firstly,the real stress distributions in plates with thickness of 30,40 and 50 mm and then in the specimens were obtained through simulation and X-ray surface stress measurement.Secondly,in order to study the impact of specimens shapes and processing ways on the results accuracy,two irregular shapes (parallelogram and trapezoid) and two processing ways (saw and electron discharge machining (EDM)) were compared and analyzed by simulation and experiment using layer removal method,then the specimen effects on measurement results were evaluated.The results show that:1) the non-uniform stress distribution characteristics of the specimen near the surface of the cut is significant,the range of non-uniform stress distribution is approximately one-thickness distance away from the cut,and it decreases gradually along the depth;2) In order to ensure the stability in the results,it is suitable to take the specimen plane size 2-3 times of its thickness;3) Conventional processing methods have little effect on experimental results and the average deviation is less than 5%.展开更多
A numerical study based on the finite volume method has been performed to study the three-dimension natural convection in a parallelogrammic top side opened cavity filled nanofluid with partially heated square at the ...A numerical study based on the finite volume method has been performed to study the three-dimension natural convection in a parallelogrammic top side opened cavity filled nanofluid with partially heated square at the bottom side.Results are obtained for different governing parameters such as nanoparticle concentration (φ) from 0 to 0.05,inclination angle of the back and front walls (α) from 5° to 75°,Rayleigh number from 10^3 to 10^5,and length of heater changer from 0.1 to 1.The main finding from the obtained result showed that the inclination angle and nanoparticle volume fraction affect the flow structure and enhance the heat transfer.展开更多
Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quant...Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quantitatively monitor the crack characteristics near the bolt hole with fewer layers and coils,compared with the existing methods.The parallelogram coil array configuration is designed and optimized to improve the quantitative monitoring ability of the crack.A 3×3 parallelogram coil array is used to quantify the crack parameters of aluminum bolted joints.Finite element simulation and experiments show that the proposed parallelogram coil array could not only accurately and quantitatively identify the crack angle at the edge of the bolt hole,but also track the crack length along the radial direction of the bolt hole and the depth along the axial direction.展开更多
Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext...Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.展开更多
We extend the recent formulation of the Ewald sum for electrostatics in a two-dimensionally periodic three-dimensional multi- atom layer or two-dimensional single-atom layer system with a rectangular periodic boundary...We extend the recent formulation of the Ewald sum for electrostatics in a two-dimensionally periodic three-dimensional multi- atom layer or two-dimensional single-atom layer system with a rectangular periodic boundary condition (J Chem Theory, Comput, 2014, 10: 534-542) to that with a parallelogrammic periodic boundary condition in general. Following the discussion of an efficient implementation of the formula, we suggest a simple setup of parameters using a relatively smaller screening factor and the associated larger real space cutoff distance to reach an optimized algorithm of an order N computational cost. The connection between the previous application of the Ewald sum to ionic crystal systems and the future application to mo- lecular self-assembly or disassembly systems on solid surfaces or at liquid-liquid interfaces ate illustrated to demonstrate the applicability of the present work to simulate the self-assembly process and to produce dynamical, structural and thermody- namic properties of experimental self-assembly systems of interest.展开更多
Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of or...Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^(1+min){α,1}) is established for both the displacement approximation in H^1-norm and the stress approximation in L^2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.展开更多
This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram...This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram condition when the lowest-order Raviart-Thomas space is employed in the mixed covolume method.The authors prove O(h^2) accuracy between the approximate velocity or pressure and a suitable projection of the real velocity or pressure in the L^2 norm.Numerical experiments illustrating the theoretical results are provided.展开更多
We present a detailed theoretical study on the acoustic band structure of two-dimensional (2D) phononic crystal. The 2D pho- nonic crystal with parallelogram lattice structure is considered to be formed by rigid sol...We present a detailed theoretical study on the acoustic band structure of two-dimensional (2D) phononic crystal. The 2D pho- nonic crystal with parallelogram lattice structure is considered to be formed by rigid solid rods embedded in air. For the circu- lar rods, some of the extrema of the acoustic bands appear in the usual high-symmetry points and, in contrast, we find that some of them are located in other specific lines. For the case of elliptic rods, our results indicate that it is necessary to study the whole first Brillouin zone to obtain rightly the band structure and corresponding band gaps. Furthermore, we evaluate the first and second band gaps using the plane wave expansion method and find that these gaps can be tuned by adjusting the side lengths ratio R, inclined angle 0 and filling fraction F of the parallelogram lattice with circular rods. The results show that the largest value of the first band gap appears at θ=90° and F--0.7854. In contrast, the largest value of the second band gap is at θ=60° and F=0.9068. Our results indicate that the improvement of matching degree between scatterers and lattice pattern, ra- ther than the reduction of structural symmetry, is mainly responsible for the enhancement of the band gaps in the 2D phononic crystal.展开更多
基金Project(2005CB623708) supported by the National Basic Research Program of China
文摘There is a remarkable difference in stress distribution between a specimen and a plate removed from the specimen.The plate presents a uniform stress distribution whereas the specimen presents a non-uniform stress distribution.Firstly,the real stress distributions in plates with thickness of 30,40 and 50 mm and then in the specimens were obtained through simulation and X-ray surface stress measurement.Secondly,in order to study the impact of specimens shapes and processing ways on the results accuracy,two irregular shapes (parallelogram and trapezoid) and two processing ways (saw and electron discharge machining (EDM)) were compared and analyzed by simulation and experiment using layer removal method,then the specimen effects on measurement results were evaluated.The results show that:1) the non-uniform stress distribution characteristics of the specimen near the surface of the cut is significant,the range of non-uniform stress distribution is approximately one-thickness distance away from the cut,and it decreases gradually along the depth;2) In order to ensure the stability in the results,it is suitable to take the specimen plane size 2-3 times of its thickness;3) Conventional processing methods have little effect on experimental results and the average deviation is less than 5%.
文摘A numerical study based on the finite volume method has been performed to study the three-dimension natural convection in a parallelogrammic top side opened cavity filled nanofluid with partially heated square at the bottom side.Results are obtained for different governing parameters such as nanoparticle concentration (φ) from 0 to 0.05,inclination angle of the back and front walls (α) from 5° to 75°,Rayleigh number from 10^3 to 10^5,and length of heater changer from 0.1 to 1.The main finding from the obtained result showed that the inclination angle and nanoparticle volume fraction affect the flow structure and enhance the heat transfer.
基金supported by the Natural Science Foundation of China(No.11902280)Aeronautical Science Fund(No.20200033068001)+1 种基金Innovation Fosundation for Young Scholar of Xiamen(No.3502Z20206042)the Fundamental Research Funds for the Central Universities(No.20720210049)。
文摘Crack monitoring at the bolt hole edge is one of the important focuses of aircraft structural health monitoring.In this study,a novel eddy current sensing film based on a parallelogram coil array is developed to quantitatively monitor the crack characteristics near the bolt hole with fewer layers and coils,compared with the existing methods.The parallelogram coil array configuration is designed and optimized to improve the quantitative monitoring ability of the crack.A 3×3 parallelogram coil array is used to quantify the crack parameters of aluminum bolted joints.Finite element simulation and experiments show that the proposed parallelogram coil array could not only accurately and quantitatively identify the crack angle at the edge of the bolt hole,but also track the crack length along the radial direction of the bolt hole and the depth along the axial direction.
基金Projects(2012AA010901,2012AA01A301)supported by National High Technology Research and Development Program of ChinaProjects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProjects(B120601,CX2012A002)supported by Fund Sponsor Project of Excellent Postgraduate Student of NUDT,China
文摘Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.
基金supported by the National Natural Science Foundation of China(91127015,21103063(Z.H.))
文摘We extend the recent formulation of the Ewald sum for electrostatics in a two-dimensionally periodic three-dimensional multi- atom layer or two-dimensional single-atom layer system with a rectangular periodic boundary condition (J Chem Theory, Comput, 2014, 10: 534-542) to that with a parallelogrammic periodic boundary condition in general. Following the discussion of an efficient implementation of the formula, we suggest a simple setup of parameters using a relatively smaller screening factor and the associated larger real space cutoff distance to reach an optimized algorithm of an order N computational cost. The connection between the previous application of the Ewald sum to ionic crystal systems and the future application to mo- lecular self-assembly or disassembly systems on solid surfaces or at liquid-liquid interfaces ate illustrated to demonstrate the applicability of the present work to simulate the self-assembly process and to produce dynamical, structural and thermody- namic properties of experimental self-assembly systems of interest.
基金supported by National Natural Science Foundation of China (Grant No. 11171239)Major Research Plan of National Natural Science Foundation of China (Grant No. 91430105)
文摘Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^(1+min){α,1}) is established for both the displacement approximation in H^1-norm and the stress approximation in L^2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.
基金supported by the '985' program of Jilin Universitythe National Natural Science Foundation of China under Grant No.10971082the NSAF of China under Grant No.11076014
文摘This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram condition when the lowest-order Raviart-Thomas space is employed in the mixed covolume method.The authors prove O(h^2) accuracy between the approximate velocity or pressure and a suitable projection of the real velocity or pressure in the L^2 norm.Numerical experiments illustrating the theoretical results are provided.
基金supported by the National Natural Science Foundation of China(Grant No.10974206)
文摘We present a detailed theoretical study on the acoustic band structure of two-dimensional (2D) phononic crystal. The 2D pho- nonic crystal with parallelogram lattice structure is considered to be formed by rigid solid rods embedded in air. For the circu- lar rods, some of the extrema of the acoustic bands appear in the usual high-symmetry points and, in contrast, we find that some of them are located in other specific lines. For the case of elliptic rods, our results indicate that it is necessary to study the whole first Brillouin zone to obtain rightly the band structure and corresponding band gaps. Furthermore, we evaluate the first and second band gaps using the plane wave expansion method and find that these gaps can be tuned by adjusting the side lengths ratio R, inclined angle 0 and filling fraction F of the parallelogram lattice with circular rods. The results show that the largest value of the first band gap appears at θ=90° and F--0.7854. In contrast, the largest value of the second band gap is at θ=60° and F=0.9068. Our results indicate that the improvement of matching degree between scatterers and lattice pattern, ra- ther than the reduction of structural symmetry, is mainly responsible for the enhancement of the band gaps in the 2D phononic crystal.