The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to ...The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to the effects of the physical properties and geometrical parameters of the first two forms(droplets and jets) because these forms are more important in heat-transfer behaviour and less research has been published for these forms,The flow modes and experimental results were successfully compared with previous experimental literatures,and also the effects of liquid flow rate,tube diameter,and tube spacing on departure site spacing,in both drop and jet modes,were evaluated in the low Galileo number and high viscosity fluid(cooking oil),to help developing criteria for determining falling film modes and their transitions,and to understand the heat transfer characteristics associated with each mode.展开更多
The two-dimensional flows around a cylinder between two parallel walls at Re=40 and Re=100 are simulated with computational fluid dynamics(CFD). The governing equations are Navier-Stokes equations. They are discretize...The two-dimensional flows around a cylinder between two parallel walls at Re=40 and Re=100 are simulated with computational fluid dynamics(CFD). The governing equations are Navier-Stokes equations. They are discretized with finite volume method(FVM) and the solution is iterated with PISO Algorithm. Then, the calculating results are compared with the numerical results in literature, and good agreements are obtained. After that, the mechanism of the formation of Karman vortex street is investigated and the instability of the entire flow field is analyzed with the energy gradient theory. It is found that the two eddies attached at the rear of the cylinder have no effect on the flow instability for steady flow, i.e., they don't contribute to the formation of Karman vortex street. The formation of Karman vortex street originates from the combinations of the interaction of two shear layers at two lateral sides of the cylinder and the absolute instability in the cylinder wake. For the flow with Karman vortex street, the initial instability occurs at the region in a vortex downstream of the wake and the center of a vortex firstly loses its stability in a vortex. For pressure driven flow, it is confirmed that the inflection point on the time-averaged velocity profile leads to the instability. It is concluded that the energy gradient theory is potentially applicable to study the flow stability and to reveal the mechanism of turbulent transition.展开更多
This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram...This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram condition when the lowest-order Raviart-Thomas space is employed in the mixed covolume method.The authors prove O(h^2) accuracy between the approximate velocity or pressure and a suitable projection of the real velocity or pressure in the L^2 norm.Numerical experiments illustrating the theoretical results are provided.展开更多
基金supported by New Product Development of Small and Medium Business Administration(SMBA)funded by the Ministry of Education,Science and Technology (No. 2011-0021376) through the Basic Science Program of the National Research Foundation of Korea(NRF)
文摘The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to the effects of the physical properties and geometrical parameters of the first two forms(droplets and jets) because these forms are more important in heat-transfer behaviour and less research has been published for these forms,The flow modes and experimental results were successfully compared with previous experimental literatures,and also the effects of liquid flow rate,tube diameter,and tube spacing on departure site spacing,in both drop and jet modes,were evaluated in the low Galileo number and high viscosity fluid(cooking oil),to help developing criteria for determining falling film modes and their transitions,and to understand the heat transfer characteristics associated with each mode.
基金supported by the Natural Science Foundation of Zhejiang Province LY14E060003 )the Special Major Project of Science and Technology of Zhejiang Province (No.2013C01139)+1 种基金Zhejiang Province Key Science and Technology Innovation Team (2 013TD18)the Science Foundation of Zhejiang Sci-Tech University (No.11130032661215)
文摘The two-dimensional flows around a cylinder between two parallel walls at Re=40 and Re=100 are simulated with computational fluid dynamics(CFD). The governing equations are Navier-Stokes equations. They are discretized with finite volume method(FVM) and the solution is iterated with PISO Algorithm. Then, the calculating results are compared with the numerical results in literature, and good agreements are obtained. After that, the mechanism of the formation of Karman vortex street is investigated and the instability of the entire flow field is analyzed with the energy gradient theory. It is found that the two eddies attached at the rear of the cylinder have no effect on the flow instability for steady flow, i.e., they don't contribute to the formation of Karman vortex street. The formation of Karman vortex street originates from the combinations of the interaction of two shear layers at two lateral sides of the cylinder and the absolute instability in the cylinder wake. For the flow with Karman vortex street, the initial instability occurs at the region in a vortex downstream of the wake and the center of a vortex firstly loses its stability in a vortex. For pressure driven flow, it is confirmed that the inflection point on the time-averaged velocity profile leads to the instability. It is concluded that the energy gradient theory is potentially applicable to study the flow stability and to reveal the mechanism of turbulent transition.
基金supported by the '985' program of Jilin Universitythe National Natural Science Foundation of China under Grant No.10971082the NSAF of China under Grant No.11076014
文摘This paper considers the mixed covolume method for the second-order elliptic equations over quadrilaterals.Superconvergence results are established in this paper on quadrilateral grids satisfying the h^2-parallelogram condition when the lowest-order Raviart-Thomas space is employed in the mixed covolume method.The authors prove O(h^2) accuracy between the approximate velocity or pressure and a suitable projection of the real velocity or pressure in the L^2 norm.Numerical experiments illustrating the theoretical results are provided.