In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If the...In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1).展开更多
In this paper, we consider a class of submanifolds with parallel mean curvacture vector fields. We obitain the suffitient conditions that the above submanifolds is of tatall umbilical and that its codimension is decre...In this paper, we consider a class of submanifolds with parallel mean curvacture vector fields. We obitain the suffitient conditions that the above submanifolds is of tatall umbilical and that its codimension is decrease.展开更多
Complete space-like submanifolds in a de Sitter Space with parallel mean curvature vector are investigated, a main Theorem for M to be totally umbilical is obtained.
We have discussed the C-totally real subrnanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.Simons type, and improved one result of S.Yamaguchi.
We investigate rigidity problems for odd-dimensional compact submanifolds.We show that if Mn(n 5) is an odd-dimensional compact submanifold with parallel mean curvature in Sn+p,and if RicM >(n- 2-1n)(1 + H2...We investigate rigidity problems for odd-dimensional compact submanifolds.We show that if Mn(n 5) is an odd-dimensional compact submanifold with parallel mean curvature in Sn+p,and if RicM >(n- 2-1n)(1 + H2) and H < δn,where δn is an explicit positive constant depending only on n,then M is a totally umbilical sphere.Here H is the mean curvature of M.Moreover,we prove that if Mn(n 5) is an odd-dimensional compact submanifold in the space form Fn+p(c) with c 0,and if RicM >(n-2-εn)(c+H2),where εn is an explicit positive constant depending only on n,then M is homeomorphic to a sphere.展开更多
Abstract The author introduces the w-function defined on the considered spacelike graph M. Under the growth conditions w = o(log z) and w = o(r), two Bernstein type theorems for M in Rm^n+m are got, where z and r...Abstract The author introduces the w-function defined on the considered spacelike graph M. Under the growth conditions w = o(log z) and w = o(r), two Bernstein type theorems for M in Rm^n+m are got, where z and r are the pseudo-Euclidean distance and the distance function on M to some fixed point respectively. As the ambient space is a curved pseudo- Riemannian product of two Riemannian manifolds (∑1,g1) and (∑2,g2) of dimensions n and m, a Bernstein type result for n =2 under some curvature conditions on E1 and E2 and the growth condition w = o(r) is also got. As more general cases, under some curvature conditions on the ambient space and the growth condition w = o(r) or w = o(√r), the author concludes that if M has parallel mean curvature, then M is maximal.展开更多
文摘In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1).
文摘In this paper, we consider a class of submanifolds with parallel mean curvacture vector fields. We obitain the suffitient conditions that the above submanifolds is of tatall umbilical and that its codimension is decrease.
文摘Complete space-like submanifolds in a de Sitter Space with parallel mean curvature vector are investigated, a main Theorem for M to be totally umbilical is obtained.
文摘We have discussed the C-totally real subrnanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.Simons type, and improved one result of S.Yamaguchi.
基金supported by National Natural Science Foundation of China (Grant Nos.11071211,11371315 and 11301476)the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of Chinathe China Postdoctoral Science Foundation (Grant No.2012M521156)
文摘We investigate rigidity problems for odd-dimensional compact submanifolds.We show that if Mn(n 5) is an odd-dimensional compact submanifold with parallel mean curvature in Sn+p,and if RicM >(n- 2-1n)(1 + H2) and H < δn,where δn is an explicit positive constant depending only on n,then M is a totally umbilical sphere.Here H is the mean curvature of M.Moreover,we prove that if Mn(n 5) is an odd-dimensional compact submanifold in the space form Fn+p(c) with c 0,and if RicM >(n-2-εn)(c+H2),where εn is an explicit positive constant depending only on n,then M is homeomorphic to a sphere.
文摘Abstract The author introduces the w-function defined on the considered spacelike graph M. Under the growth conditions w = o(log z) and w = o(r), two Bernstein type theorems for M in Rm^n+m are got, where z and r are the pseudo-Euclidean distance and the distance function on M to some fixed point respectively. As the ambient space is a curved pseudo- Riemannian product of two Riemannian manifolds (∑1,g1) and (∑2,g2) of dimensions n and m, a Bernstein type result for n =2 under some curvature conditions on E1 and E2 and the growth condition w = o(r) is also got. As more general cases, under some curvature conditions on the ambient space and the growth condition w = o(r) or w = o(√r), the author concludes that if M has parallel mean curvature, then M is maximal.