In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressi...In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge.展开更多
With the rapid development of cryptography, the strength of security protocols and encryption algorithms consumedly relies on the quality of random number. In many cryptography applications, higher speed is one of the...With the rapid development of cryptography, the strength of security protocols and encryption algorithms consumedly relies on the quality of random number. In many cryptography applications, higher speed is one of the references required. A new security random number generator architecture is presented. Its philosophy architecture is implemented with FPGA, based on the thermal noise and linear feedback shift register(LFSR). The thermal noise initializes LFSRs and is used as the disturbed source of the system to ensure the unpredictability of the produced random number and improve the security strength of the system. Parallel LFSRs can produce the pseudo-random numbers with long period and higher speed. The proposed architecture can meet the requirements of high quality and high speed in cryptography.展开更多
At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage betw...At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage between saddles and main cables. This article presents the researches conducted on structure selection and behavior characteristics of middle pylon, interaction mechanism between main cables and saddles and their anti-slippage safety performance, elastic and plastic stability analysis and safety assessment of steel middle pylon, and fatigue design load and method for steel pylon of Taizhou Bridge. According to the research results, a longitudinal inverted Y shape steel middle pylon is used in design, effectively solving many technical difficulties, and this type of pylon has become a suitable middle pylon structural form for many three-ovlon two-soan susoension bridges.展开更多
Gas drainage effect is the utmost important factor for mining speed and mining safety. It has great meaning to study the effect of gas drainage. Comparative experiment of gas drainage in different types of drillings s...Gas drainage effect is the utmost important factor for mining speed and mining safety. It has great meaning to study the effect of gas drainage. Comparative experiment of gas drainage in different types of drillings shows that the initial rate of gas natural emission by hydraulic loosed cross drilling is 1.5 times more than that of parallel drilling, and the drilling gas at- tenuation coefficients reduces to 0.78 times, the effect of gas drainage is good. The ultimate quantity of gas drainage of parallel drilling, cross drilling, hydraulic loosed cross drilling are 859.1, 1 323.5 and 1 833.6 m3/100 m. The results of the measurement through these three kinds of drillings of 100 meters drilling is considered as following: cross drilling is 1.54 times more than that of parallel drillings, hydraulic loosed cross drilling are 2.13 times more than parallel drilling. The drainage rate of parallel drilling, cross drilling and hydraulic loosed cross drilling reached 10% to 15% in 3 months with the pre-draining time. Among these, the drainage effect of hydraulic loosed cross drilling increased by 46% than that of parallel drilling in three months.展开更多
基金Project(20ZR1460700) supported by the Natural Science Foundation of Shanghai,ChinaProject supported by Shanghai Collaborative Innovation Research Center for Multi-network&Multi-modal Rail Transit,China。
文摘In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge.
基金National Natural Science Foundation of China(60373087 and 90104005) Foundation for Doctoral SpecialBranch by Ministry of Education of China(20020486046)
文摘With the rapid development of cryptography, the strength of security protocols and encryption algorithms consumedly relies on the quality of random number. In many cryptography applications, higher speed is one of the references required. A new security random number generator architecture is presented. Its philosophy architecture is implemented with FPGA, based on the thermal noise and linear feedback shift register(LFSR). The thermal noise initializes LFSRs and is used as the disturbed source of the system to ensure the unpredictability of the produced random number and improve the security strength of the system. Parallel LFSRs can produce the pseudo-random numbers with long period and higher speed. The proposed architecture can meet the requirements of high quality and high speed in cryptography.
基金National Science and Technology Support Programs of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)"333 High-level Personnel Training Project"Special Funded Projects in Jiangsu Province
文摘At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage between saddles and main cables. This article presents the researches conducted on structure selection and behavior characteristics of middle pylon, interaction mechanism between main cables and saddles and their anti-slippage safety performance, elastic and plastic stability analysis and safety assessment of steel middle pylon, and fatigue design load and method for steel pylon of Taizhou Bridge. According to the research results, a longitudinal inverted Y shape steel middle pylon is used in design, effectively solving many technical difficulties, and this type of pylon has become a suitable middle pylon structural form for many three-ovlon two-soan susoension bridges.
基金Supported by the National Science and Technology Planning Project (2009BAK54B03) the National Natural Science Foundation of China (50834005)
文摘Gas drainage effect is the utmost important factor for mining speed and mining safety. It has great meaning to study the effect of gas drainage. Comparative experiment of gas drainage in different types of drillings shows that the initial rate of gas natural emission by hydraulic loosed cross drilling is 1.5 times more than that of parallel drilling, and the drilling gas at- tenuation coefficients reduces to 0.78 times, the effect of gas drainage is good. The ultimate quantity of gas drainage of parallel drilling, cross drilling, hydraulic loosed cross drilling are 859.1, 1 323.5 and 1 833.6 m3/100 m. The results of the measurement through these three kinds of drillings of 100 meters drilling is considered as following: cross drilling is 1.54 times more than that of parallel drillings, hydraulic loosed cross drilling are 2.13 times more than parallel drilling. The drainage rate of parallel drilling, cross drilling and hydraulic loosed cross drilling reached 10% to 15% in 3 months with the pre-draining time. Among these, the drainage effect of hydraulic loosed cross drilling increased by 46% than that of parallel drilling in three months.