Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under differ...Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.展开更多
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role...The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.展开更多
The spatial orientation of optical radiation sources has long been the hot topic in the aerospace and the military applications.Current researches mainly focus on the high precision orientation on the partial field of...The spatial orientation of optical radiation sources has long been the hot topic in the aerospace and the military applications.Current researches mainly focus on the high precision orientation on the partial field of view.Thus,combination of several partial fields of view is required to achieve orientation when the field of view exceeds 180°,which results in the increase of size,weight,power consumption and the cost.By defining radiation energy and direction of the optical radiation source as a vector and applying the cosine law of radiation and vector theorem,it is shown that the vector can be obtained from unit normal vectors on the three un-coplanar surfaces and from the energy projected by the optical radiation source.Based on this,an orientation method with 360° full field of view by a polyhedron is suggested,the mathematical formula for anti-multipath interference is supposed and the error upper limit is derived.The feasibility and effectiveness of this method are validated by measurements and simulation.An accuracy better than 2.866° and 0.574° is achieved when the ratio of measurement error of energy on arbitrary surface and the true value are 5% and 1%,respectively,given the matrix composed of unit normal vectors on three measurement surfaces is orthogonal.展开更多
基金support from the Australian Research Council-linkage Project
文摘Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.
基金supported by the National Key Basic Research and Development Program(2010CB950404)the National High Technology Research and Development Program(2013AA09A506)
文摘The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.
文摘The spatial orientation of optical radiation sources has long been the hot topic in the aerospace and the military applications.Current researches mainly focus on the high precision orientation on the partial field of view.Thus,combination of several partial fields of view is required to achieve orientation when the field of view exceeds 180°,which results in the increase of size,weight,power consumption and the cost.By defining radiation energy and direction of the optical radiation source as a vector and applying the cosine law of radiation and vector theorem,it is shown that the vector can be obtained from unit normal vectors on the three un-coplanar surfaces and from the energy projected by the optical radiation source.Based on this,an orientation method with 360° full field of view by a polyhedron is suggested,the mathematical formula for anti-multipath interference is supposed and the error upper limit is derived.The feasibility and effectiveness of this method are validated by measurements and simulation.An accuracy better than 2.866° and 0.574° is achieved when the ratio of measurement error of energy on arbitrary surface and the true value are 5% and 1%,respectively,given the matrix composed of unit normal vectors on three measurement surfaces is orthogonal.