针对处于复杂的环境背景下的电力绝缘子以及绝缘子缺陷的检测存在检测精度低、检测速度不高的实际问题,提出了一种改进YOLOv4(you only look once v4)算法的电力绝缘子图像以及存在缺陷的绝缘子检测的方法。通过制作电力绝缘子以及绝缘...针对处于复杂的环境背景下的电力绝缘子以及绝缘子缺陷的检测存在检测精度低、检测速度不高的实际问题,提出了一种改进YOLOv4(you only look once v4)算法的电力绝缘子图像以及存在缺陷的绝缘子检测的方法。通过制作电力绝缘子以及绝缘子存在缺陷的数据集,使用K-均值聚类(K-means)算法对电力绝缘子图像样本进行聚类,获得不同大小的先验框参数;然后通过改进平衡交叉熵(balanced cross entropy,BCE)引入一个权重系数,来增加损失函数的贡献程度;最后,通过增加空间金字塔池化结构(spatial pyramid pooling,SPP)前后的卷积层来加深网络的深度。实验结果表明,改进模型的单张检测时间为3.27 s,对于绝缘子缺陷平均检测精度比原始的YOLOv4算法提升了24.36%。同时通过改进后的YOLOv4算法在测试集上的平均精度均值(mean average precision,mAP)的值为84.05%,比原始的YOLOv4算法提升了17.83%,充分说明了能够很好的定位和识别电力绝缘子图像存在的缺陷。展开更多
This study combined fault identification with a deep learning algorithm and applied a convolutional neural network(CNN)design based on an improved balanced crossentropy(BCE)loss function to address the low accuracy in...This study combined fault identification with a deep learning algorithm and applied a convolutional neural network(CNN)design based on an improved balanced crossentropy(BCE)loss function to address the low accuracy in the intelligent identification of seismic faults and the slow training speed of convolutional neural networks caused by unbalanced training sample sets.The network structure and optimal hyperparameters were determined by extracting feature maps layer by layer and by analyzing the results of seismic feature extraction.The BCE loss function was used to add the parameter which is the ratio of nonfaults to the total sample sets,thereby changing the loss function to find the reference of the minimum weight parameter and adjusting the ratio of fault to nonfault data.The method overcame the unbalanced number of sample sets and improved the iteration speed.After a brief training,the accuracy could reach more than 95%,and gradient descent was evident.The proposed method was applied to fault identification in an oilfield area.The trained model can predict faults clearly,and the prediction results are basically consistent with an actual case,verifying the effectiveness and adaptability of the method.展开更多
文摘针对处于复杂的环境背景下的电力绝缘子以及绝缘子缺陷的检测存在检测精度低、检测速度不高的实际问题,提出了一种改进YOLOv4(you only look once v4)算法的电力绝缘子图像以及存在缺陷的绝缘子检测的方法。通过制作电力绝缘子以及绝缘子存在缺陷的数据集,使用K-均值聚类(K-means)算法对电力绝缘子图像样本进行聚类,获得不同大小的先验框参数;然后通过改进平衡交叉熵(balanced cross entropy,BCE)引入一个权重系数,来增加损失函数的贡献程度;最后,通过增加空间金字塔池化结构(spatial pyramid pooling,SPP)前后的卷积层来加深网络的深度。实验结果表明,改进模型的单张检测时间为3.27 s,对于绝缘子缺陷平均检测精度比原始的YOLOv4算法提升了24.36%。同时通过改进后的YOLOv4算法在测试集上的平均精度均值(mean average precision,mAP)的值为84.05%,比原始的YOLOv4算法提升了17.83%,充分说明了能够很好的定位和识别电力绝缘子图像存在的缺陷。
基金supported by the Natural Science Foundation of Shandong Province(ZR202103050722).
文摘This study combined fault identification with a deep learning algorithm and applied a convolutional neural network(CNN)design based on an improved balanced crossentropy(BCE)loss function to address the low accuracy in the intelligent identification of seismic faults and the slow training speed of convolutional neural networks caused by unbalanced training sample sets.The network structure and optimal hyperparameters were determined by extracting feature maps layer by layer and by analyzing the results of seismic feature extraction.The BCE loss function was used to add the parameter which is the ratio of nonfaults to the total sample sets,thereby changing the loss function to find the reference of the minimum weight parameter and adjusting the ratio of fault to nonfault data.The method overcame the unbalanced number of sample sets and improved the iteration speed.After a brief training,the accuracy could reach more than 95%,and gradient descent was evident.The proposed method was applied to fault identification in an oilfield area.The trained model can predict faults clearly,and the prediction results are basically consistent with an actual case,verifying the effectiveness and adaptability of the method.