The article presents a population balance model by mass developed for studying char gasification by steam occuring in a fluidized bed. The model has been validated by comparison with existing theoretical and experimen...The article presents a population balance model by mass developed for studying char gasification by steam occuring in a fluidized bed. The model has been validated by comparison with existing theoretical and experimental cases. Its main goal is to have a better understanding on particles size distribution behaviour during operation of the fluidized bed, and in particular to be applied on the case of Fast Internally Circulating Fluidized Beds for char gasification. Results have shown that the initial properties of the fluidized bed particles (bed and size distribution) are almost not involved in the steady state obtained in continous operation, which is excusively dependent on the properties of the fed particles flow rate and size distribution, the withdrawal flow rate and the reaction properties. Morevoer, it has been proven that the steady state fluidized bed mass and size distribution may be theroretically controlled by an adequate choice of feeding and withdrawal flow rates.展开更多
文摘The article presents a population balance model by mass developed for studying char gasification by steam occuring in a fluidized bed. The model has been validated by comparison with existing theoretical and experimental cases. Its main goal is to have a better understanding on particles size distribution behaviour during operation of the fluidized bed, and in particular to be applied on the case of Fast Internally Circulating Fluidized Beds for char gasification. Results have shown that the initial properties of the fluidized bed particles (bed and size distribution) are almost not involved in the steady state obtained in continous operation, which is excusively dependent on the properties of the fed particles flow rate and size distribution, the withdrawal flow rate and the reaction properties. Morevoer, it has been proven that the steady state fluidized bed mass and size distribution may be theroretically controlled by an adequate choice of feeding and withdrawal flow rates.