为保证电池储能持续平抑波动,该文提出一种基于双层协调控制的电池集成储能控制策略。外层控制中,提出基于近零相位自适应滤波的风功率平滑策略,不仅使并网功率满足1、10 min时间尺度波动平抑需求,还减小了控制过程中相位滞后,并在风功...为保证电池储能持续平抑波动,该文提出一种基于双层协调控制的电池集成储能控制策略。外层控制中,提出基于近零相位自适应滤波的风功率平滑策略,不仅使并网功率满足1、10 min时间尺度波动平抑需求,还减小了控制过程中相位滞后,并在风功率较平稳时自适应控制储能系统退出运行,有效降低了储能系统额定功率需求和运行负担。内层控制中,采用不同充、放电特性的两组磷酸铁锂电池集成以跟踪功率指令,并定义等效荷电状态(state of charge,SOC)指标衡量储能系统的整体SOC水平,随后将等效SOC与外层控制相联系,提出基于Logistic动态区间的SOC优化策略,确保优化过程中并网功率满足要求,并解决充、放电不均衡情况下的高/低SOC极端运行状态,保证电池储能持续平抑波动能力,同时可使两组电池储能接近最优放电深度(depth of discharge,DOD)运行,充分利用其循环寿命。展开更多
电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考...电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考虑材料二次电子和背散射电子发射电流,分析电推进产生等离子体充电电流特性,基于充放电平衡方程进行电推进等离子体及空间等离子体共同作用下的表面带电机理研究。研究结果表明:地磁亚暴时期,航天器表面受到地球同步轨道等离子体的影响,其表面电位可高达–10~4 k V;电推进工作时,其羽流等离子体充电电流为10-3 A/m^2,远大于空间等离子体充电电流,从而成为卫星表面带电的主要影响因素;同时电推进等离子体将航天器表面电位中和至–10 V,即电推进交换电荷返流可以有效缓解由空间等离子体造成的危害性表面充放电效应。展开更多
文摘为保证电池储能持续平抑波动,该文提出一种基于双层协调控制的电池集成储能控制策略。外层控制中,提出基于近零相位自适应滤波的风功率平滑策略,不仅使并网功率满足1、10 min时间尺度波动平抑需求,还减小了控制过程中相位滞后,并在风功率较平稳时自适应控制储能系统退出运行,有效降低了储能系统额定功率需求和运行负担。内层控制中,采用不同充、放电特性的两组磷酸铁锂电池集成以跟踪功率指令,并定义等效荷电状态(state of charge,SOC)指标衡量储能系统的整体SOC水平,随后将等效SOC与外层控制相联系,提出基于Logistic动态区间的SOC优化策略,确保优化过程中并网功率满足要求,并解决充、放电不均衡情况下的高/低SOC极端运行状态,保证电池储能持续平抑波动能力,同时可使两组电池储能接近最优放电深度(depth of discharge,DOD)运行,充分利用其循环寿命。
文摘电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考虑材料二次电子和背散射电子发射电流,分析电推进产生等离子体充电电流特性,基于充放电平衡方程进行电推进等离子体及空间等离子体共同作用下的表面带电机理研究。研究结果表明:地磁亚暴时期,航天器表面受到地球同步轨道等离子体的影响,其表面电位可高达–10~4 k V;电推进工作时,其羽流等离子体充电电流为10-3 A/m^2,远大于空间等离子体充电电流,从而成为卫星表面带电的主要影响因素;同时电推进等离子体将航天器表面电位中和至–10 V,即电推进交换电荷返流可以有效缓解由空间等离子体造成的危害性表面充放电效应。