It is well known that plants have functional equilibrium between their above-ground parts (shoots) and below-ground parts (roots), but whether the above-ground parts of plants have functional equilibrium between their...It is well known that plants have functional equilibrium between their above-ground parts (shoots) and below-ground parts (roots), but whether the above-ground parts of plants have functional equilibrium between their photosynthetic structures (leaves) and non-photosynthetic structures (branches and stem) is unknown. The purpose of this study is to test the hypotheses that: (1) the above-ground parts of plants have functional equilibriums between their photosynthetic structures and non-photosynthetic structures; (2) the maintenance of the equilibriums is guaranteed by the alteration of biomass partitioning to photosynthetic and non-photosynthetic structures. To test these hypotheses, a pruning experiment with four pruning intensities (0%, 20%, 50%, and 70%) were carried out with three subtropical Chinese tree species ( Ficus microcarpa, Ficus virens, Cinnamomum camphora). Pruning treatments were conducted in two successive years. The results were in conformity with the hypothesis, i.e. above-ground parts of trees had functional equilibriums between photosynthetic and non-photosynthetic structures. Pruning decreased instantaneously the mass ratios of photosynthetic structures to non-photosynthetic structures (P/NP) of all three tree species, the reduction in P/NP was strengthened with pruning intensity. However, one year after pruning, the P/NP of all pruned trees increased and were not smaller than those of unpruned trees. In agreement with the expectation, the biomass partitioning of pruned trees was altered, more newly produced above-ground biomass was partitioned to leaf growth and less to branch and stem growth, thus enabled the damaged trees to restore their functional equilibrium between photosynthetic and non-photosynthetic structures. It is clear that the maintenance of functional equilibrium between photosynthetic and non-photosynthetic structures guaranteed by the alteration of biomass partitioning provides plants a good strategy to resist external disturbance and damage.展开更多
For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equil...For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equilibrium-partitioning- based numerical SQGs have been developed or are currently available because of the confounding factors mediating the bioavailability of metals. A study was conducted at Dianchi Lake, which is a heavily eutrophicated lake on the Yunnan- Guizhou Plateau, China with the focus on the measurement of partitioning coefficient (Kp) and SQGs derivation and normalization to acid volatile sulfide (AVS), fine material, and organic carbon. Using new normalization methods, SQGs were formulated for seven metals including copper, zinc, lead, cadmium, chromium, mercury, and arsenic in Dianchi Lake. In Dianchi Lake sediments, the fine material contributed 25.4%-36.0% to the SQG values, with the largest contribution to the SQG value of mercury; AVS contributed 2.9%-75.0% to the SQG values, with the largest contribution to the SQG value of cadmium. This indicated that the fine material and the AVS were the most important controlling factors to the bioavailability of mercury and caximium, respectively. The contribution of total organic carbon (TOC) to the SQG values of copper and leaxi was 3.8% and 7.1%, respectively, indicating that at relatively lower concentrations, the contribution of TOC was not significant. In addition to normalization methods, appropriate procedures for the application of EqPA including sample collection, storage, and analysis are also essential to improve the reliability of SQGs. The normalized Dianchi Lake SQGs were higher than most of the empirically based SQGs developed in North America, but lower than Hong Kong interim SQGs except for cadmium and arsenic. The differences could be attributed to the approaches used for derivation of SQGs and the water quality criteria adopted and the differences in the physical and chemical characteristics of the sediments.展开更多
A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted wi...A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10 × 10m2 grid, the soil moisture distribution in the field was structural with a temporal stability. According to the autocorrelation range of the semi-variance function, S sites were selected for the determination of soil water conditions. The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one. The error in the estimation of the average of S random samples was 14% (α = 0.10), and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Since the experimental field was large enough to avoid any edge effect, the results obtained should tally with the actual situation. Yet the soil system was heterogeneous, so we must follow the principles of statistics and geostatistics when describing the system 's status with the average of the samples.展开更多
文摘It is well known that plants have functional equilibrium between their above-ground parts (shoots) and below-ground parts (roots), but whether the above-ground parts of plants have functional equilibrium between their photosynthetic structures (leaves) and non-photosynthetic structures (branches and stem) is unknown. The purpose of this study is to test the hypotheses that: (1) the above-ground parts of plants have functional equilibriums between their photosynthetic structures and non-photosynthetic structures; (2) the maintenance of the equilibriums is guaranteed by the alteration of biomass partitioning to photosynthetic and non-photosynthetic structures. To test these hypotheses, a pruning experiment with four pruning intensities (0%, 20%, 50%, and 70%) were carried out with three subtropical Chinese tree species ( Ficus microcarpa, Ficus virens, Cinnamomum camphora). Pruning treatments were conducted in two successive years. The results were in conformity with the hypothesis, i.e. above-ground parts of trees had functional equilibriums between photosynthetic and non-photosynthetic structures. Pruning decreased instantaneously the mass ratios of photosynthetic structures to non-photosynthetic structures (P/NP) of all three tree species, the reduction in P/NP was strengthened with pruning intensity. However, one year after pruning, the P/NP of all pruned trees increased and were not smaller than those of unpruned trees. In agreement with the expectation, the biomass partitioning of pruned trees was altered, more newly produced above-ground biomass was partitioned to leaf growth and less to branch and stem growth, thus enabled the damaged trees to restore their functional equilibrium between photosynthetic and non-photosynthetic structures. It is clear that the maintenance of functional equilibrium between photosynthetic and non-photosynthetic structures guaranteed by the alteration of biomass partitioning provides plants a good strategy to resist external disturbance and damage.
基金Project supported by the State Key Laboratory of Soil and Sustainable Agriculture, China (No. 5022505)the National Natural Science Foundation of China (No. 40771128)
文摘For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equilibrium-partitioning- based numerical SQGs have been developed or are currently available because of the confounding factors mediating the bioavailability of metals. A study was conducted at Dianchi Lake, which is a heavily eutrophicated lake on the Yunnan- Guizhou Plateau, China with the focus on the measurement of partitioning coefficient (Kp) and SQGs derivation and normalization to acid volatile sulfide (AVS), fine material, and organic carbon. Using new normalization methods, SQGs were formulated for seven metals including copper, zinc, lead, cadmium, chromium, mercury, and arsenic in Dianchi Lake. In Dianchi Lake sediments, the fine material contributed 25.4%-36.0% to the SQG values, with the largest contribution to the SQG value of mercury; AVS contributed 2.9%-75.0% to the SQG values, with the largest contribution to the SQG value of cadmium. This indicated that the fine material and the AVS were the most important controlling factors to the bioavailability of mercury and caximium, respectively. The contribution of total organic carbon (TOC) to the SQG values of copper and leaxi was 3.8% and 7.1%, respectively, indicating that at relatively lower concentrations, the contribution of TOC was not significant. In addition to normalization methods, appropriate procedures for the application of EqPA including sample collection, storage, and analysis are also essential to improve the reliability of SQGs. The normalized Dianchi Lake SQGs were higher than most of the empirically based SQGs developed in North America, but lower than Hong Kong interim SQGs except for cadmium and arsenic. The differences could be attributed to the approaches used for derivation of SQGs and the water quality criteria adopted and the differences in the physical and chemical characteristics of the sediments.
文摘A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10 × 10m2 grid, the soil moisture distribution in the field was structural with a temporal stability. According to the autocorrelation range of the semi-variance function, S sites were selected for the determination of soil water conditions. The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one. The error in the estimation of the average of S random samples was 14% (α = 0.10), and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Since the experimental field was large enough to avoid any edge effect, the results obtained should tally with the actual situation. Yet the soil system was heterogeneous, so we must follow the principles of statistics and geostatistics when describing the system 's status with the average of the samples.