Three adsorption rate rnodels are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intrap...Three adsorption rate rnodels are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models Ⅰ and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model Ⅰ is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption pro-cesses while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.展开更多
基金Supported by the National Natural Science Foundation of China (No. 30070636).
文摘Three adsorption rate rnodels are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models Ⅰ and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model Ⅰ is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption pro-cesses while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.