期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多体动力学仿真在柴油机平衡性预测中的应用 被引量:1
1
作者 杨陈 郝志勇 刘保林 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第12期97-99,共3页
为了消除作用在柴油机机体上的不平衡一级往复惯性力,提出了一种基于多体动力学仿真技术的方法,通过振动分析来评价发动机的平衡性是否达到预计的设计目标.建立了柴油机的动力学模型,根据设计结果设定平衡轴的参数,对某单缸柴油机不安... 为了消除作用在柴油机机体上的不平衡一级往复惯性力,提出了一种基于多体动力学仿真技术的方法,通过振动分析来评价发动机的平衡性是否达到预计的设计目标.建立了柴油机的动力学模型,根据设计结果设定平衡轴的参数,对某单缸柴油机不安装和安装一级平衡轴100%平衡一阶往复惯性力的平衡轴进行仿真,结果表明:安装一级平衡轴后,各悬置3个方向的一阶振动速度明显降低,有助于改善整机的NVH(噪声、振动、舒适性)性能,仿真结果与实验结果基本符合. 展开更多
关键词 柴油机 平衡性预测 多体动力学 振动 仿真
原文传递
Improving MapReduce Performance by Balancing Skewed Loads 被引量:4
2
作者 FAN Yuanquan WU Weiguo XU Yunlong CHEN Heng 《China Communications》 SCIE CSCD 2014年第8期85-108,共24页
MapReduce has emerged as a popular computing model used in datacenters to process large amount of datasets.In the map phase,hash partitioning is employed to distribute data that sharing the same key across data center... MapReduce has emerged as a popular computing model used in datacenters to process large amount of datasets.In the map phase,hash partitioning is employed to distribute data that sharing the same key across data center-scale cluster nodes.However,we observe that this approach can lead to uneven data distribution,which can result in skewed loads among reduce tasks,thus hamper performance of MapReduce systems.Moreover,worker nodes in MapReduce systems may differ in computing capability due to(1) multiple generations of hardware in non-virtualized data centers,or(2) co-location of virtual machines in virtualized data centers.The heterogeneity among cluster nodes exacerbates the negative effects of uneven data distribution.To improve MapReduce performance in heterogeneous clusters,we propose a novel load balancing approach in the reduce phase.This approach consists of two components:(1) performance prediction for reducers that run on heterogeneous nodes based on support vector machines models,and(2) heterogeneity-aware partitioning(HAP),which balances skewed data for reduce tasks.We implement this approach as a plug-in in current MapReduce system.Experimental results demonstrate that our proposed approach distributes work evenly among reduce tasks,and improves MapReduce performance with little overhead. 展开更多
关键词 MAPREDUCE cloud computing skewed loads performance prediction supportvector machines
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部