In this paper, an SEIVR epidemic model with generalized incidence and preventive vaccination is considered. First, we formulate the model and obtain its basic properties. Then, we find the equilibrium points of the mo...In this paper, an SEIVR epidemic model with generalized incidence and preventive vaccination is considered. First, we formulate the model and obtain its basic properties. Then, we find the equilibrium points of the model, the disease-free and the endemic equilibrium. The stability of disease-free and endemic equilibrium is associated with the basic reproduction number R0. If the basic reproduction number R0〈 1, the disease- free equilibrium is locally as well as globally asymptotically stable. Moreover, if the basic reproduction number R0 〉 1, the disease is uniformly persistent and the unique endemic equilibrium of the system is locally as well as globally asymptotically stable under certain conditions. Finally, the numerical results justify the analytical results.展开更多
In this paper, an SIRS epidemic model with time delay and vaccination is investigated. By analyzing the corresponding characteristic equation, the local stability of diseasefree equilibrium of the model is established...In this paper, an SIRS epidemic model with time delay and vaccination is investigated. By analyzing the corresponding characteristic equation, the local stability of diseasefree equilibrium of the model is established. By constructing Lyapunov functional, sufficient conditions are established for the local stability of an endemic equilibrium of the model. Further, a threshold value is obtained. By using comparison arguments, it is proved when the threshold value is less than unity, the diseasefree equilibrium is globally asymptoti cally stable. When the threshold value is greater than unity, by using an iteration scheme and by constructing appropriate Lyapunov functional, respectively, sufficient conditions are derived for the global stability of the endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.展开更多
文摘In this paper, an SEIVR epidemic model with generalized incidence and preventive vaccination is considered. First, we formulate the model and obtain its basic properties. Then, we find the equilibrium points of the model, the disease-free and the endemic equilibrium. The stability of disease-free and endemic equilibrium is associated with the basic reproduction number R0. If the basic reproduction number R0〈 1, the disease- free equilibrium is locally as well as globally asymptotically stable. Moreover, if the basic reproduction number R0 〉 1, the disease is uniformly persistent and the unique endemic equilibrium of the system is locally as well as globally asymptotically stable under certain conditions. Finally, the numerical results justify the analytical results.
文摘In this paper, an SIRS epidemic model with time delay and vaccination is investigated. By analyzing the corresponding characteristic equation, the local stability of diseasefree equilibrium of the model is established. By constructing Lyapunov functional, sufficient conditions are established for the local stability of an endemic equilibrium of the model. Further, a threshold value is obtained. By using comparison arguments, it is proved when the threshold value is less than unity, the diseasefree equilibrium is globally asymptoti cally stable. When the threshold value is greater than unity, by using an iteration scheme and by constructing appropriate Lyapunov functional, respectively, sufficient conditions are derived for the global stability of the endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.