In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT...In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired.展开更多
The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing tr...The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow.展开更多
Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex...Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex combination of the conditional expectations of PTT-below and PTT-excess travel times. The former was designed as a risk-optimistic travel time index, and the latter was a risk-pessimistic one. Hence, CMTT was able to describe various routing risk-attitudes. The central idea of CMTT was comprehensively illustrated and the difference among the existing travel time indices was analyzed. The Wardropian combined mean traffic equilibrium(CMTE) model was formulated as a variational inequality and solved via an alternating direction algorithm nesting extra-gradient projection process. Some mathematical properties of CMTT and CMTE model were rigorously proved. Finally, a numerical example was performed to characterize the CMTE network. It is founded that that risk-pessimism is of more benefit to a modest(or low) congestion and risk network, however, it changes to be risk-optimism for a high congestion and risk network.展开更多
There are two states of methane existing in coal, free methane and adsorptive methane. The two states of methane exchanged with each other which need the energy exchange with outside. It is released heat when methane ...There are two states of methane existing in coal, free methane and adsorptive methane. The two states of methane exchanged with each other which need the energy exchange with outside. It is released heat when methane adsorption on coal, instead of absorbed heat. According to the gas molecules Boltzmann energy distribution, is obtained the equilibrium equations of the two states of methane in coal, as well as the heat of adsorption equation when exchanged into each other. At the same time, high temperature experiments of methane adsorption on coal have been certificated to the theoretical model. At last the experimental results presented that: the two-state energy model could be accurately described the distribution of the two states of methane in the coal; the adsorption heat is related to the initial equilibrium state of methane adsorption; the adsorption heats are different with different coal ranks.展开更多
In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperatur...In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.展开更多
An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was a...An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.展开更多
The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was de...The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.展开更多
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and break...This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.展开更多
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso...In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.展开更多
The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion...The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion removal. The equilibrium isotherm study showed that the maximum monolayer coverage on the biomass surface was 0.933 mg·g-1 and 0.874 mg·g-1 for Mn2+ and Cr3+ ions respectively. The highest percentage of Cr3+ and Mn2+ ions adsorbed by the biomass was 86.4% and 82.6% at the optimum pH of 4.0 and 6.0 respectively. The results also showed that the highest percentage removal 82.5% and 78.3% was obtained at 30 and 20 minutes respectively for Cr3+ and Mn2+ ions. The sorption process was examined by means of the Langmuir model. The adsorption equilibrium data were found to follow the Langmuir isotherm model with high coefficients of determination (R2 = 0.990 and 0.999) for Cr+ and Mn2+ ions respectively. The adsorption capacity of water hyacinth showed that water hyacinth will be useful in recovering chromium (III) and manganese (II) ions from solution and their subsequent removal from industrial effluents.展开更多
A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations ...A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations canbe used to calculate the mass of star.In addition,we find that star's mass has a minimum when matter state parameterγ→0.展开更多
An efficient water use requires accurate estimations of crop ET (evapotranspiration). However, an accurate ET estimation is really difficult to achieve when big regions such as irrigation districts or complete water...An efficient water use requires accurate estimations of crop ET (evapotranspiration). However, an accurate ET estimation is really difficult to achieve when big regions such as irrigation districts or complete watersheds are involved. Satellite images are an alternative that can be used to estimate accurate crop ET for big regions. In the present study, two known methods were used to estimate crop ET, the METRIC model which was developed by the University of Idaho and a Kc-NDVI relationship. In the METRIC model, ET is estimated as a residual of the energy balance equation. The second method uses reference ET, and estimates a crop coefficient (K,.) as a linear function of the NDVI vegetation index. ET was estimated in a section of the Rio Mayo Irrigation District located in Sonora, Mexico using Landsat 7 satellite images. Crop ET of the main crops was estimated. Results show some differences between both methods. An average ET depth of 460 mm for the wheat average growing season was found when using METRIC, while an average ET depth of 421 mm was found when using the Kc-NDVI relationship. A water use total efficiency of 62% and 63% was found for METRIC and the Kc-NDVI relationship, respectively.展开更多
The relationship between vegetation greening and climate change remains unclear due to its complexity, especially in drylands. Against the background of global warming, arid and semi-arid areas, including mid-latitude...The relationship between vegetation greening and climate change remains unclear due to its complexity, especially in drylands. Against the background of global warming, arid and semi-arid areas, including mid-latitude deserts, are most sensitive to climate change. In recent decades, the mechanisms underlying the relationship between vegetation greening and climate change have been widely discussed in the literature. However, the influence of vegetation greening in high latitudes on regional climate has not been fully studied. In this paper, a two-dimensional energy balance model was used to study the influence of greening in high latitudes on mid-latitude deserts. The authors found that when greening occurs in high latitudes, the mid-latitude desert recedes at the south boundary, while the polar ice belt and low-latitude vegetation belt both expand. Simultaneously, greening in high latitudes can induce a negative temperature anomaly in northern latitudes and a positive temperature anomaly in southern latitudes. The mid-latitude desert expands at its north and south boundaries until the CO2 concentration reaches 600 ppm(saturated state). The greening in high latitudes could result in a lower global-mean temperature in the ‘saturated’ state, due to the stronger cooling in high latitudes.展开更多
Based on an attribution analysis of the global mean temperature biases in the Flexible Global Ocean- AtmOsphere-Land System model, spectral version 2 (FGOALS-s2) through a coupled atmosphere-surface ch- mate feedb...Based on an attribution analysis of the global mean temperature biases in the Flexible Global Ocean- AtmOsphere-Land System model, spectral version 2 (FGOALS-s2) through a coupled atmosphere-surface ch- mate feedback-response analysis method (CFRAM), the model's global surface-atmosphere energy balance in boreal winter and summer is examined. Within the en- ergy-balance-based CFRAM system, the model temperature biases are attributed to energy perturbations resulting from model biases in individual radiative and non-radia- tive processes in the atmosphere and at the surface. The results show that, although the global mean surface tem- perature (Ts) bias is only 0.38 K in January and 1.70 K in July, and the atmospheric temperature (Ta) biases from the troposphere to the stratosphere are only around +3 K at most, the temperature biases due to model biases in rep- resenting the individual radiative and non-radiative proc- esses are considerably large (over -4-10 K at most). Spe- cifically, the global cold radiative Ts bias, mainly due to the overestimated surface albedo, is compensated for by the global warm non-radiative Ts bias that is mainly due to the overestimated downward surface heat fluxes. The model biases in non-radiative processes in the lower tro- posphere (up to 5-15 K) are relatively much larger than in upper levels, which are mainly responsible for the warm Ta biases there. In contrast, the global mean cold ira biases in the mid-to-upper troposphere are mainly dominated by radiative processes. The warm/cold Ta biases in the lower/upper stratosphere are dominated by non-radiative processes, while the warm ira biases in the mid-strato- sphere can be attributed to the radiative ozone feedback process.展开更多
This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathemati...This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathematical model to control the exiting temperature of the heating fluid as well as the temperatures of the absorber and the glass. The experimental level investigates the influence of the solar absorber tube diameter on the performances of the driving device. Several experiments were made in order to know the possibility to reach temperatures being able to ensure for example the ammonia vaporization in the generator of a solar absorption refrigeration system. These experiments were carried out under various operating and climatic conditions. The results are presented and discussed.展开更多
Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibrat...Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibration caused by mass unbalance. On-line active balancing is a new balancing procedure which is more convenient and precise than the previous methods. In this paper,an electromagnetic balancer based on ring coils and permanent magnets is presented. The balancer has a simple structure and the self-locking function without clutch,and transfers power by the non-contact electromagnetic field. In order to justify the rationality of its design,a two-dimension(2D) electromagnetic finite element model is conducted to verify that this magnetic circuit has no flux leakage and saturation. A three-dimension (3D) 1/10 model of the balancer is built to obtain the self-locking torque and driving torque. Based on the research work above,an electromagnetic balancer is developed. By testing the balancer using COCO80,it is verified effective to reduce the rotor unbalance at the speed of 1300 r/min.展开更多
基金financially supported by the Ministry of Water Resources (MWR) public sector research and special funds-the most stringent in arid zone water resources management key technologies (201301103)National Nature Science Foundation of China (NSFC) under Grant No. 41130641, 41201025+1 种基金Ministry of Education Key Laboratory of Eco-Oasis Open Topic-Moisture change in Central Asia and its influence on precipitation in Xinjang Province (XJDX0201-2013-07)the Tianshan Scholar Start-up Fund provided by Xinjiang University
文摘In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired.
基金supported by the Knowledge Innovation Key Project of Chinese Academy of Sciences (Nos. CX10G-E01-08 andKZCX2-SW-317) and the National Natural Science Foundation of China (No. 50279049)
文摘The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow.
基金Project(2012CB725403-5)supported by National Basic Research Program of ChinaProject(71131001-2)supported by National Natural Science Foundation of China+1 种基金Projects(2012JBZ005)supported by Fundamental Research Funds for the Central Universities,ChinaProject(201170)supported by the Foundation for National Excellent Doctoral Dissertation of China
文摘Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex combination of the conditional expectations of PTT-below and PTT-excess travel times. The former was designed as a risk-optimistic travel time index, and the latter was a risk-pessimistic one. Hence, CMTT was able to describe various routing risk-attitudes. The central idea of CMTT was comprehensively illustrated and the difference among the existing travel time indices was analyzed. The Wardropian combined mean traffic equilibrium(CMTE) model was formulated as a variational inequality and solved via an alternating direction algorithm nesting extra-gradient projection process. Some mathematical properties of CMTT and CMTE model were rigorously proved. Finally, a numerical example was performed to characterize the CMTE network. It is founded that that risk-pessimism is of more benefit to a modest(or low) congestion and risk network, however, it changes to be risk-optimism for a high congestion and risk network.
基金Supported by the National Natural Science Foundation of China (21373146)
文摘There are two states of methane existing in coal, free methane and adsorptive methane. The two states of methane exchanged with each other which need the energy exchange with outside. It is released heat when methane adsorption on coal, instead of absorbed heat. According to the gas molecules Boltzmann energy distribution, is obtained the equilibrium equations of the two states of methane in coal, as well as the heat of adsorption equation when exchanged into each other. At the same time, high temperature experiments of methane adsorption on coal have been certificated to the theoretical model. At last the experimental results presented that: the two-state energy model could be accurately described the distribution of the two states of methane in the coal; the adsorption heat is related to the initial equilibrium state of methane adsorption; the adsorption heats are different with different coal ranks.
文摘In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.
基金Supported by the National Basic Research Program of China(2007CB714006)the National Natural Science Foundation of China(90815023)
文摘An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.
基金the financial supports from the National Natural Science Foundation of China(No.52005244)the Scientific Research Fund of Hunan Provincial Education Department,China(Nos.18B285,18B552)+1 种基金the Natural Science Foundation of Hunan Provincial,China(Nos.2019JJ50510,2019JJ70077)Young Scholars Program of Furong Scholar Program,China.
文摘The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.
基金supported by the National Natural Science Foundation of China (50879085)the Program for New Century Excellent Talents in University(NCET-07-0778)Fundamental Research Funds for the Central Universities (2012QNA4020)
文摘This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.
基金the financial support provided by the National Basic Research Program of China (973 Program) (Grant No. 2011CB710605)the National Natural Science Foundation of China (Grant Nos. 41102174, 41302217)supported by the National Key Technology R&D Program of China (Grant No. 2012BAK10B05)
文摘In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.
文摘The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion removal. The equilibrium isotherm study showed that the maximum monolayer coverage on the biomass surface was 0.933 mg·g-1 and 0.874 mg·g-1 for Mn2+ and Cr3+ ions respectively. The highest percentage of Cr3+ and Mn2+ ions adsorbed by the biomass was 86.4% and 82.6% at the optimum pH of 4.0 and 6.0 respectively. The results also showed that the highest percentage removal 82.5% and 78.3% was obtained at 30 and 20 minutes respectively for Cr3+ and Mn2+ ions. The sorption process was examined by means of the Langmuir model. The adsorption equilibrium data were found to follow the Langmuir isotherm model with high coefficients of determination (R2 = 0.990 and 0.999) for Cr+ and Mn2+ ions respectively. The adsorption capacity of water hyacinth showed that water hyacinth will be useful in recovering chromium (III) and manganese (II) ions from solution and their subsequent removal from industrial effluents.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations canbe used to calculate the mass of star.In addition,we find that star's mass has a minimum when matter state parameterγ→0.
文摘An efficient water use requires accurate estimations of crop ET (evapotranspiration). However, an accurate ET estimation is really difficult to achieve when big regions such as irrigation districts or complete watersheds are involved. Satellite images are an alternative that can be used to estimate accurate crop ET for big regions. In the present study, two known methods were used to estimate crop ET, the METRIC model which was developed by the University of Idaho and a Kc-NDVI relationship. In the METRIC model, ET is estimated as a residual of the energy balance equation. The second method uses reference ET, and estimates a crop coefficient (K,.) as a linear function of the NDVI vegetation index. ET was estimated in a section of the Rio Mayo Irrigation District located in Sonora, Mexico using Landsat 7 satellite images. Crop ET of the main crops was estimated. Results show some differences between both methods. An average ET depth of 460 mm for the wheat average growing season was found when using METRIC, while an average ET depth of 421 mm was found when using the Kc-NDVI relationship. A water use total efficiency of 62% and 63% was found for METRIC and the Kc-NDVI relationship, respectively.
基金This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006010301]the National Natural Science Foundation of China[grant numbers 41521004,41705047,and 41875083]+1 种基金the Foundation of the Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University from the Fundamental Research Funds for the Central Universities[grant numbers lzujbky-2017-bt04 and lzujbky-2017-70]the China 111 Project[grant number B13045].
文摘The relationship between vegetation greening and climate change remains unclear due to its complexity, especially in drylands. Against the background of global warming, arid and semi-arid areas, including mid-latitude deserts, are most sensitive to climate change. In recent decades, the mechanisms underlying the relationship between vegetation greening and climate change have been widely discussed in the literature. However, the influence of vegetation greening in high latitudes on regional climate has not been fully studied. In this paper, a two-dimensional energy balance model was used to study the influence of greening in high latitudes on mid-latitude deserts. The authors found that when greening occurs in high latitudes, the mid-latitude desert recedes at the south boundary, while the polar ice belt and low-latitude vegetation belt both expand. Simultaneously, greening in high latitudes can induce a negative temperature anomaly in northern latitudes and a positive temperature anomaly in southern latitudes. The mid-latitude desert expands at its north and south boundaries until the CO2 concentration reaches 600 ppm(saturated state). The greening in high latitudes could result in a lower global-mean temperature in the ‘saturated’ state, due to the stronger cooling in high latitudes.
基金jointly supported by the Special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY201406001)Science Foundation of the Chinese Academy of Sciences(Grant No.XDA11010402)the National Natural Science Foundation of China(Grant No.91437105)
文摘Based on an attribution analysis of the global mean temperature biases in the Flexible Global Ocean- AtmOsphere-Land System model, spectral version 2 (FGOALS-s2) through a coupled atmosphere-surface ch- mate feedback-response analysis method (CFRAM), the model's global surface-atmosphere energy balance in boreal winter and summer is examined. Within the en- ergy-balance-based CFRAM system, the model temperature biases are attributed to energy perturbations resulting from model biases in individual radiative and non-radia- tive processes in the atmosphere and at the surface. The results show that, although the global mean surface tem- perature (Ts) bias is only 0.38 K in January and 1.70 K in July, and the atmospheric temperature (Ta) biases from the troposphere to the stratosphere are only around +3 K at most, the temperature biases due to model biases in rep- resenting the individual radiative and non-radiative proc- esses are considerably large (over -4-10 K at most). Spe- cifically, the global cold radiative Ts bias, mainly due to the overestimated surface albedo, is compensated for by the global warm non-radiative Ts bias that is mainly due to the overestimated downward surface heat fluxes. The model biases in non-radiative processes in the lower tro- posphere (up to 5-15 K) are relatively much larger than in upper levels, which are mainly responsible for the warm Ta biases there. In contrast, the global mean cold ira biases in the mid-to-upper troposphere are mainly dominated by radiative processes. The warm/cold Ta biases in the lower/upper stratosphere are dominated by non-radiative processes, while the warm ira biases in the mid-strato- sphere can be attributed to the radiative ozone feedback process.
文摘This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathematical model to control the exiting temperature of the heating fluid as well as the temperatures of the absorber and the glass. The experimental level investigates the influence of the solar absorber tube diameter on the performances of the driving device. Several experiments were made in order to know the possibility to reach temperatures being able to ensure for example the ammonia vaporization in the generator of a solar absorption refrigeration system. These experiments were carried out under various operating and climatic conditions. The results are presented and discussed.
基金The National Science and Technology Major Project of China(No.2010ZX04012-014)
文摘Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibration caused by mass unbalance. On-line active balancing is a new balancing procedure which is more convenient and precise than the previous methods. In this paper,an electromagnetic balancer based on ring coils and permanent magnets is presented. The balancer has a simple structure and the self-locking function without clutch,and transfers power by the non-contact electromagnetic field. In order to justify the rationality of its design,a two-dimension(2D) electromagnetic finite element model is conducted to verify that this magnetic circuit has no flux leakage and saturation. A three-dimension (3D) 1/10 model of the balancer is built to obtain the self-locking torque and driving torque. Based on the research work above,an electromagnetic balancer is developed. By testing the balancer using COCO80,it is verified effective to reduce the rotor unbalance at the speed of 1300 r/min.