An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalan...An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.展开更多
Software Defined Networking(SDN) provides flexible network management by decoupling control plane and data plane. However, such separation introduces the issues regarding the reliability of the control plane and contr...Software Defined Networking(SDN) provides flexible network management by decoupling control plane and data plane. However, such separation introduces the issues regarding the reliability of the control plane and controller load imbalance in the distributed SDN network, which will cause the low network stability and the poor controller performance. This paper proposes Reliable and Load balance-aware Multi-controller Deployment(RLMD) strategy to address the above problems. Firstly, we establish a multiple-controller network model and define the relevant parameters for RLMD. Then, we design the corresponding algorithms to implement this strategy. By weighing node efficiency and path quality, Controller Placement Selection(CPS) algorithm is introduced to explore the reliable deployments of the controllers. On this basis, we design Multiple Domain Partition(MDP) algorithm to allocate switches for controllers according to node attractability and controller load balancing rate, which could realize the reasonable domain planning. Finally, the simulations show that, compared with the typical strategies, RLMD has the better performance in improving the reliability of the control plane and balancing the distribution of the controller loads.展开更多
In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The appro...In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.展开更多
A time-domain frequencydependent I/Q imbalance compensation scheme based on Golay complementary sequence for receiver is presented. By utilizing property of Golay sequence, the signal and its conjugate interference(im...A time-domain frequencydependent I/Q imbalance compensation scheme based on Golay complementary sequence for receiver is presented. By utilizing property of Golay sequence, the signal and its conjugate interference(image interference)in preamble are separated by correlation and used to estimate I/Q imbalance parameters.After that, a Least Square(LS) estimation of compensation filter is obtained and adopted in the compensation structure. Two applications of the presented algorithm are discussed: we could either estimate the channel along with I/Q imbalance or estimate the imbalance parameter only to maintain a lower cost. Both applications are testified by simulation. The results show that the image interference is significantly suppressed even in poor SNR condition, and the computation cost of the algorithms is low.展开更多
Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibrat...Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibration caused by mass unbalance. On-line active balancing is a new balancing procedure which is more convenient and precise than the previous methods. In this paper,an electromagnetic balancer based on ring coils and permanent magnets is presented. The balancer has a simple structure and the self-locking function without clutch,and transfers power by the non-contact electromagnetic field. In order to justify the rationality of its design,a two-dimension(2D) electromagnetic finite element model is conducted to verify that this magnetic circuit has no flux leakage and saturation. A three-dimension (3D) 1/10 model of the balancer is built to obtain the self-locking torque and driving torque. Based on the research work above,an electromagnetic balancer is developed. By testing the balancer using COCO80,it is verified effective to reduce the rotor unbalance at the speed of 1300 r/min.展开更多
China's economy can be characterized as having two correlated imbalances, i.e. imbalances in its domestic and international economic structures. It would be very difficult to identify a causal relationship between th...China's economy can be characterized as having two correlated imbalances, i.e. imbalances in its domestic and international economic structures. It would be very difficult to identify a causal relationship between the two imbalances. In any case, this is an outcome of the past few decades. The same situation can also befound in other countries. Where are China's economy and its reform heading towards? At the macro-level, the econmnic policies guiding China's economy and its performance are closely related to the two imbalances. One thing is for certain: world economic equilibrium will help balance various economies including China. But the world economy cannot automatically balance itself. Various economies must restore their balance before equilibrium can be achieved at the global level. For individual countries, balancing their domestic economy is what they can concentrate on. In other words, China needs to rely on its own efforts to achieve internal economic balance through reform. Internal econontic balance will promote sustainable development and contribute to the world economic balance. The questhm is where will such internal balance come from? How can China achieve an internal rebalance?展开更多
In this paper, an investigation on the nonlinear vibration, especially on the super-harmonic resonances, in a cracked rotor system is carried out to provide a novel idea for the detection of crack faults in rotor syst...In this paper, an investigation on the nonlinear vibration, especially on the super-harmonic resonances, in a cracked rotor system is carried out to provide a novel idea for the detection of crack faults in rotor systems. The motion equations of the system are formulated with the consideration of the additional excitation from an inertial environment as well as the forced excitation of the rotor unbalance. By using the harmonic balance method, the analytical solutions of the equations with four orders of harmonic exponents are obtained to analyze the nonlinear response of the system. Then through numerical calculations, the vibration responses affected by system parameters including the inertial excitation, the forced excitation, the crack and damping factors are investigated in detail. The results show that the occurrence of the super-harmonic resonances of the rotor system is due to the interaction between crack breathing and the inertial excitation. Correspondingly, the super-harmonic responses are significantly affected by the inertial excitation and the crack stiffness(or depth). The rotor unbalance, however, does not make apparent effects on the super-harmonic responses. Consequently, the super-harmonic resonances peaks can be viewed as an identification signal of the crack fault due to the application of the inertial excitation. By utilizing the inertial excitation, the super-harmonic response signals in rotor systems with early crack faults can be amplified and detected more easily.展开更多
Many covariate-adaptive randomization procedures have been proposed and implemented to balance important covariates in clinical trials. These methods are usually based on fully observed covariates. In practice,the cov...Many covariate-adaptive randomization procedures have been proposed and implemented to balance important covariates in clinical trials. These methods are usually based on fully observed covariates. In practice,the covariates of a patient are often partially missing. We propose a novel covariate-adaptive design to deal with missing covariates and study its properties. For the proposed design, we show that as the number of patients increases, the overall imbalance, observed margin imbalance and fully observed stratum imbalance are bounded in probability. Under certain covariate-dependent missing mechanism, the proposed design can balance missing covariates as if the covariates are observed. Finally, we explore our methods and theoretical findings through simulations.展开更多
Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surfac...Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.展开更多
In this paper, an explicitly analytical shock mapping relation is approximately deduced based on the theoretical modeling of the chemical nonequilibrium stagnation flow towards a slightly blunted nose. Based on the re...In this paper, an explicitly analytical shock mapping relation is approximately deduced based on the theoretical modeling of the chemical nonequilibrium stagnation flow towards a slightly blunted nose. Based on the relation, the complex reacting stagnation flow problem can be discussed under the framework of the simplest normal shockwave flow. Therefore, a quantita- tively meaningful criterion for dissociation nonequilibrium flow, that is a specific Damk hler number Da d , is naturally intro- duced as the ratio of the mapping length of the stagnation streamline and the characteristic nonequilibrium scale. Da d is found to be dependent on the flow's rarefaction criterion W r , that is a specific Knudsen number. Then, based on Da d , a normalized analytical formulation is obtained to quantitatively predict the actual degrees of dissociation at the outer edge of the stagnation point boundary layer (SPBL). At last, the direct simulation Monte Carlo (DSMC) method is employed to validate the analytical results, and the related flow mechanism is discussed. The present study not only shows nonequilibrium features of the flow problem, but also provides an indispensable basis for the following study on the nonequilibrium SPBL heat transfer.展开更多
To determine the interdependence of intracranial pressure(ICP) and intraocular pressure(IOP) and how it affects optic nerve pressures, eight normal dogs were examined using pressure-sensing probes implanted into the l...To determine the interdependence of intracranial pressure(ICP) and intraocular pressure(IOP) and how it affects optic nerve pressures, eight normal dogs were examined using pressure-sensing probes implanted into the left ventricle, lumbar cistern, optic nerve subarachnoid space in the left eye, and anterior chamber in the left eye. This allowed ICP, lumbar cistern pressure(LCP), optic nerve subarachnoid space pressure(ONSP) and IOP to be simultaneously recorded. After establishing baseline pressure levels, pressure changes that resulted from lowering ICP(via shunting cerebrospinal fluid(CSF) from the ventricle) were recorded. At baseline, all examined pressures were different(ICP>LCP>ONSP), but correlated(P<0.001). As ICP was lowered during CSF shunting, IOP also dropped in a parallel time course so that the trans-lamina cribrosa gradient(TLPG) remained stable(ICP-IOP dependent zone). However, once ICP fell below a critical breakpoint, ICP and IOP became uncoupled and TLPG changed as ICP declined(ICP-IOP independent zone). The optic nerve pressure gradient(ONPG) and trans-optic nerve pressure gradient(TOPG) increased linearly as ICP decreased through both the ICP-IOP dependent and independent zones. We conclude that ICP and IOP are coupled in a specific pressure range, but when ICP drops below a critical point, IOP and ICP become uncoupled and TLPG increases. When ICP drops, a rise in the ONPG and TOPG creates more pressure and reduces CSF flow around the optic nerve. This change may play a role in the development and progression of various ophthalmic and neurological diseases, including glaucoma.展开更多
Based on existing researches,here we theoretically summarized the characteristics of the atmospheric movement and turbulent transport of energy and substance in the surface layer as well as the ideal and the actual mo...Based on existing researches,here we theoretically summarized the characteristics of the atmospheric movement and turbulent transport of energy and substance in the surface layer as well as the ideal and the actual models for the turbulent transport.Then,using the data observed with eddy covariance at the semiarid climate and environment monitoring station(SACOL) in Lanzhou University from May to October during four consecutive years(September 2006-August 2010),we conducted a detailed analysis of the turbulent transport in the surface layer,through introducing the relative vertical turbulence intensity to characterize the turbulence strength,RIw=wn(wn+U),and also by adopting the method for controlling data quality at different levels.Our conclusions are:(1) The turbulent transport of energy and substance in the surface layer must obey the law of conservation of energy and the law of conservation of matter,the observed and calculated energy in the surface layer must be balanced,or closed in theory,but the actual observed and calculated energy just approximates the ideal in some degree and is difficult to achieve the energy balance.(2) The energy closure rate depends much on the atmospheric state in the surface layer,and the energy closure rate increases generally with the relative vertical turbulence intensity.(3) By the way of controlling data quality at different levels,it is found that the degree of data quality control can affect the closure rate,but it does not change the fact that the energy closure rate depends on the atmospheric state.(4) The calculation method of surface soil heat flux can affect energy closure rate,but does not change its dependence on the atmospheric state.展开更多
基金Supported by the National Natural Science Foundation of China (No. 50635010) and the National High Technology Research and Development Program of China ( No. 2007AA04Z422 ).
文摘An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.
基金supported in part by the Project of National Network Cyberspace Security (Grant No.2017YFB0803204)the National High-Tech Research and Development Program of China (863 Program) (Grant No. 2015AA016102)+1 种基金Foundation for Innovative Research Group of the National Natural Science Foundation of China (Grant No.61521003)Foundation for the National Natural Science Foundation of China (Grant No. 61502530)
文摘Software Defined Networking(SDN) provides flexible network management by decoupling control plane and data plane. However, such separation introduces the issues regarding the reliability of the control plane and controller load imbalance in the distributed SDN network, which will cause the low network stability and the poor controller performance. This paper proposes Reliable and Load balance-aware Multi-controller Deployment(RLMD) strategy to address the above problems. Firstly, we establish a multiple-controller network model and define the relevant parameters for RLMD. Then, we design the corresponding algorithms to implement this strategy. By weighing node efficiency and path quality, Controller Placement Selection(CPS) algorithm is introduced to explore the reliable deployments of the controllers. On this basis, we design Multiple Domain Partition(MDP) algorithm to allocate switches for controllers according to node attractability and controller load balancing rate, which could realize the reasonable domain planning. Finally, the simulations show that, compared with the typical strategies, RLMD has the better performance in improving the reliability of the control plane and balancing the distribution of the controller loads.
基金supported by the National Natural Science Foundation of China(No.61163058No.61201250 and No.61363006)Guangxi Key Laboratory of Trusted Software(No.KX201306)
文摘In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(No.2011AA010201)National Science and Technology Major Project(No.2013ZX03005010)+1 种基金the National Natural Science Foundation of China(NSFC)(No.61371103 and No.60902025)Key Science and Technology Program of Sichuan Province of China(No.2012FZ0119 and No.2012FZ0029)
文摘A time-domain frequencydependent I/Q imbalance compensation scheme based on Golay complementary sequence for receiver is presented. By utilizing property of Golay sequence, the signal and its conjugate interference(image interference)in preamble are separated by correlation and used to estimate I/Q imbalance parameters.After that, a Least Square(LS) estimation of compensation filter is obtained and adopted in the compensation structure. Two applications of the presented algorithm are discussed: we could either estimate the channel along with I/Q imbalance or estimate the imbalance parameter only to maintain a lower cost. Both applications are testified by simulation. The results show that the image interference is significantly suppressed even in poor SNR condition, and the computation cost of the algorithms is low.
基金The National Science and Technology Major Project of China(No.2010ZX04012-014)
文摘Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibration caused by mass unbalance. On-line active balancing is a new balancing procedure which is more convenient and precise than the previous methods. In this paper,an electromagnetic balancer based on ring coils and permanent magnets is presented. The balancer has a simple structure and the self-locking function without clutch,and transfers power by the non-contact electromagnetic field. In order to justify the rationality of its design,a two-dimension(2D) electromagnetic finite element model is conducted to verify that this magnetic circuit has no flux leakage and saturation. A three-dimension (3D) 1/10 model of the balancer is built to obtain the self-locking torque and driving torque. Based on the research work above,an electromagnetic balancer is developed. By testing the balancer using COCO80,it is verified effective to reduce the rotor unbalance at the speed of 1300 r/min.
文摘China's economy can be characterized as having two correlated imbalances, i.e. imbalances in its domestic and international economic structures. It would be very difficult to identify a causal relationship between the two imbalances. In any case, this is an outcome of the past few decades. The same situation can also befound in other countries. Where are China's economy and its reform heading towards? At the macro-level, the econmnic policies guiding China's economy and its performance are closely related to the two imbalances. One thing is for certain: world economic equilibrium will help balance various economies including China. But the world economy cannot automatically balance itself. Various economies must restore their balance before equilibrium can be achieved at the global level. For individual countries, balancing their domestic economy is what they can concentrate on. In other words, China needs to rely on its own efforts to achieve internal economic balance through reform. Internal econontic balance will promote sustainable development and contribute to the world economic balance. The questhm is where will such internal balance come from? How can China achieve an internal rebalance?
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2015CB057400)the National Natural Science Foundation of China(Grant No.11302058)
文摘In this paper, an investigation on the nonlinear vibration, especially on the super-harmonic resonances, in a cracked rotor system is carried out to provide a novel idea for the detection of crack faults in rotor systems. The motion equations of the system are formulated with the consideration of the additional excitation from an inertial environment as well as the forced excitation of the rotor unbalance. By using the harmonic balance method, the analytical solutions of the equations with four orders of harmonic exponents are obtained to analyze the nonlinear response of the system. Then through numerical calculations, the vibration responses affected by system parameters including the inertial excitation, the forced excitation, the crack and damping factors are investigated in detail. The results show that the occurrence of the super-harmonic resonances of the rotor system is due to the interaction between crack breathing and the inertial excitation. Correspondingly, the super-harmonic responses are significantly affected by the inertial excitation and the crack stiffness(or depth). The rotor unbalance, however, does not make apparent effects on the super-harmonic responses. Consequently, the super-harmonic resonances peaks can be viewed as an identification signal of the crack fault due to the application of the inertial excitation. By utilizing the inertial excitation, the super-harmonic response signals in rotor systems with early crack faults can be amplified and detected more easily.
基金supported by National Natural Science Foundation of China(Grant Nos.11371366 and 11201479)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120004120007)the Basic Research Funds in Renmin University of China from the central government(Grant Nos.13XNLJ03 and 12XNQ049)
文摘Many covariate-adaptive randomization procedures have been proposed and implemented to balance important covariates in clinical trials. These methods are usually based on fully observed covariates. In practice,the covariates of a patient are often partially missing. We propose a novel covariate-adaptive design to deal with missing covariates and study its properties. For the proposed design, we show that as the number of patients increases, the overall imbalance, observed margin imbalance and fully observed stratum imbalance are bounded in probability. Under certain covariate-dependent missing mechanism, the proposed design can balance missing covariates as if the covariates are observed. Finally, we explore our methods and theoretical findings through simulations.
基金supported by the National Natural Science Foundation of China (Grant No.40830597)the Public Welfare Research Project of China (Grant No.GYHY200806021)
文摘Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91116012 and 11202224)the Postdoctoral Science Foundation of China (Grant No. 2011M500415)
文摘In this paper, an explicitly analytical shock mapping relation is approximately deduced based on the theoretical modeling of the chemical nonequilibrium stagnation flow towards a slightly blunted nose. Based on the relation, the complex reacting stagnation flow problem can be discussed under the framework of the simplest normal shockwave flow. Therefore, a quantita- tively meaningful criterion for dissociation nonequilibrium flow, that is a specific Damk hler number Da d , is naturally intro- duced as the ratio of the mapping length of the stagnation streamline and the characteristic nonequilibrium scale. Da d is found to be dependent on the flow's rarefaction criterion W r , that is a specific Knudsen number. Then, based on Da d , a normalized analytical formulation is obtained to quantitatively predict the actual degrees of dissociation at the outer edge of the stagnation point boundary layer (SPBL). At last, the direct simulation Monte Carlo (DSMC) method is employed to validate the analytical results, and the related flow mechanism is discussed. The present study not only shows nonequilibrium features of the flow problem, but also provides an indispensable basis for the following study on the nonequilibrium SPBL heat transfer.
基金supported by the National Natural Science Foundation of China (81271005, 81300767)Beijing Natural Science Foundation (7122038)+3 种基金two separate donations by the China Health and Medical Development FoundationB.A.S. was supported by the BMBF network ERA-net Neuron “Restoration of Vision after Stroke (REVIS)” (BMBF 01EW1210)by the “Hai-ju” Beijing Overseas Talents ProgramRuowu Hou was supported by the Beijing Tongren Hospital Foundation (2015-YJJ-GGL-013)
文摘To determine the interdependence of intracranial pressure(ICP) and intraocular pressure(IOP) and how it affects optic nerve pressures, eight normal dogs were examined using pressure-sensing probes implanted into the left ventricle, lumbar cistern, optic nerve subarachnoid space in the left eye, and anterior chamber in the left eye. This allowed ICP, lumbar cistern pressure(LCP), optic nerve subarachnoid space pressure(ONSP) and IOP to be simultaneously recorded. After establishing baseline pressure levels, pressure changes that resulted from lowering ICP(via shunting cerebrospinal fluid(CSF) from the ventricle) were recorded. At baseline, all examined pressures were different(ICP>LCP>ONSP), but correlated(P<0.001). As ICP was lowered during CSF shunting, IOP also dropped in a parallel time course so that the trans-lamina cribrosa gradient(TLPG) remained stable(ICP-IOP dependent zone). However, once ICP fell below a critical breakpoint, ICP and IOP became uncoupled and TLPG changed as ICP declined(ICP-IOP independent zone). The optic nerve pressure gradient(ONPG) and trans-optic nerve pressure gradient(TOPG) increased linearly as ICP decreased through both the ICP-IOP dependent and independent zones. We conclude that ICP and IOP are coupled in a specific pressure range, but when ICP drops below a critical point, IOP and ICP become uncoupled and TLPG increases. When ICP drops, a rise in the ONPG and TOPG creates more pressure and reduces CSF flow around the optic nerve. This change may play a role in the development and progression of various ophthalmic and neurological diseases, including glaucoma.
基金supported by National Natural Science Foundation of China(Grant No. 40775017)National Basic Research Program of China(Grant No. 2012CB956200)
文摘Based on existing researches,here we theoretically summarized the characteristics of the atmospheric movement and turbulent transport of energy and substance in the surface layer as well as the ideal and the actual models for the turbulent transport.Then,using the data observed with eddy covariance at the semiarid climate and environment monitoring station(SACOL) in Lanzhou University from May to October during four consecutive years(September 2006-August 2010),we conducted a detailed analysis of the turbulent transport in the surface layer,through introducing the relative vertical turbulence intensity to characterize the turbulence strength,RIw=wn(wn+U),and also by adopting the method for controlling data quality at different levels.Our conclusions are:(1) The turbulent transport of energy and substance in the surface layer must obey the law of conservation of energy and the law of conservation of matter,the observed and calculated energy in the surface layer must be balanced,or closed in theory,but the actual observed and calculated energy just approximates the ideal in some degree and is difficult to achieve the energy balance.(2) The energy closure rate depends much on the atmospheric state in the surface layer,and the energy closure rate increases generally with the relative vertical turbulence intensity.(3) By the way of controlling data quality at different levels,it is found that the degree of data quality control can affect the closure rate,but it does not change the fact that the energy closure rate depends on the atmospheric state.(4) The calculation method of surface soil heat flux can affect energy closure rate,but does not change its dependence on the atmospheric state.