A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For ...A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For the balancing problem for the scenario-based robust assembly line with a finitely large number of potential scenarios, the direct solution methodology considering all potential scenarios is quite time-consuming. A scenario relaxation algorithm that embeds genetic al- gorithm is developed. This new algorithm guarantees termination at an optimal robust solution with relatively short running time, and makes it possible to solve robust problems with large quantities of potential scenarios. Extensive computational results are reported to show the efficiency and effectiveness of the proposed algorithm.展开更多
In this paper, a modified multi-agent system for assembly line balancing is proposed. Each worker in the assembly line is regarded as an agent, and two neighboring agents exchange information about the allocated tasks...In this paper, a modified multi-agent system for assembly line balancing is proposed. Each worker in the assembly line is regarded as an agent, and two neighboring agents exchange information about the allocated tasks. To balance the workload, an agent with a smaller workload sends a request message to his/her neighboring agent, who has a larger workload, to exchange tasks between them. Without any centralized control mechanism, each agent behaves to achieve their goal, which is to balance the workload. A tabu list and cooling control are also incorporated. However, the effectiveness of the previous system is limited, and the system depends on problems to be solved. As such, a modified system is proposed. In the proposed system, the cycle time is used when considering the proposal of exchange of allocated tasks instead of the task time allocated to the neighboring workers. Also, in the proposed system, the length of tabu list is determined dynamically based on the current number of possible exchanges, and the best cycle time in the search with cooling at medium speed is recorded for the second search that is finished when the current cycle time reaches the recorded cycle time. The effectiveness of the modified system is investigated by solving problems for various conditions. The results show that the proposed system is effective regardless of the problems that are encountered.展开更多
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z160) and the National Natural Science Foundation of China ( No. 60874066).
文摘A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For the balancing problem for the scenario-based robust assembly line with a finitely large number of potential scenarios, the direct solution methodology considering all potential scenarios is quite time-consuming. A scenario relaxation algorithm that embeds genetic al- gorithm is developed. This new algorithm guarantees termination at an optimal robust solution with relatively short running time, and makes it possible to solve robust problems with large quantities of potential scenarios. Extensive computational results are reported to show the efficiency and effectiveness of the proposed algorithm.
文摘In this paper, a modified multi-agent system for assembly line balancing is proposed. Each worker in the assembly line is regarded as an agent, and two neighboring agents exchange information about the allocated tasks. To balance the workload, an agent with a smaller workload sends a request message to his/her neighboring agent, who has a larger workload, to exchange tasks between them. Without any centralized control mechanism, each agent behaves to achieve their goal, which is to balance the workload. A tabu list and cooling control are also incorporated. However, the effectiveness of the previous system is limited, and the system depends on problems to be solved. As such, a modified system is proposed. In the proposed system, the cycle time is used when considering the proposal of exchange of allocated tasks instead of the task time allocated to the neighboring workers. Also, in the proposed system, the length of tabu list is determined dynamically based on the current number of possible exchanges, and the best cycle time in the search with cooling at medium speed is recorded for the second search that is finished when the current cycle time reaches the recorded cycle time. The effectiveness of the modified system is investigated by solving problems for various conditions. The results show that the proposed system is effective regardless of the problems that are encountered.