In this artilce a new optical trap 2D array by the acoustic modulation is proposed. Based on the "called" acoustic-elasticity of the fluid embedding trapped microparticle, the expression describing the refractive in...In this artilce a new optical trap 2D array by the acoustic modulation is proposed. Based on the "called" acoustic-elasticity of the fluid embedding trapped microparticle, the expression describing the refractive index induced by cross-interference of two perpendicular ultrasonic waves is approximately derived. By simulation, the 2D array of the Graded-refractive index lenses appeared in the fluid layer with certain strain-acoustic constant and thickness. The trapping capability of the plane-wave laser beam propagating through those lenses is shown out, and the appearance of the optical trap 2D array has been affirmed.展开更多
When teaching electromagnetic fields and waves, the application of Matlab program to make simulation of electromagnetic distribution and the transmission of waves, which dynamicly shows the propagation of waves, helps...When teaching electromagnetic fields and waves, the application of Matlab program to make simulation of electromagnetic distribution and the transmission of waves, which dynamicly shows the propagation of waves, helps students learn electromagnetic fields and electromagnetic waves. This article focuses on simulating the dynamic process of the propagation, reflection and refraction of uniform plane wave in a different medium.展开更多
Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly...Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly observed physical phenomena.It is found that,for a given propagation,if the polarization is parallel to the wave vector,so also to the Poynting vector.In such a case,the phase velocity is identical to the energy velocity;the quasi P-wave degenerates to a pure P-wave along the propagation.It is also noted that if the polarization is parallel to the Poynting vector but not to the wave vector,the propagating wave cannot be a pure P-wave.Furthermore,the polarization in a quasi P-wave may deviate from the wave vector for more than 45°,but the deviation from the Poynting vector is always less than 45°.The energy velocity of a quasi SV-wave can be larger than that of the quasi P-wave in some propagation directions,even though the phase velocity of a quasi SV-wave may never be larger than either the phase velocity or energy velocity of the quasi P-wave.Finally,in case of parameters ε=0 and δ*≠0,the polarization of a quasi P-wave has an observed symmetry at a 45°phase angle.The anisotropy of a hexagonal system solid determines if a pure P-wave can be created and what the propagation direction is for a plane wave propagating inside such a hexagonal system solid.展开更多
The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the s...The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scat- tered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluat- ed. The influences of surface stress are discussed based on the numerical results.展开更多
The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave e...The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave expansion method. We show the existence of an absolute band gap of the perfect phononic crystal and linear defect modes inside the gap caused by localization of flexural waves at or near the defects. The displacement distributions show that flexural waves can transmit well along the straight linear defect created by removing one row of cylinders from the perfect phononic crystals for almost all the frequencies falling in the band gap, which indicates that this structure can act as a high efficiency waveguide. However, for bending or branching linear defects, there exist both guided and localized modes, and therefore the phononic crystals could be served as waveguides or filters.展开更多
Under the circumstance of optical axis being in the incident plane,the evanescent wave of total reflection is studied when an extraordinary beam is incident from an isotropic medium upon a uniaxial crystal by using th...Under the circumstance of optical axis being in the incident plane,the evanescent wave of total reflection is studied when an extraordinary beam is incident from an isotropic medium upon a uniaxial crystal by using the general characteristics of uniaxial crystal and electromagnetic field.This paper presents the propagation directions of equiphase plane and the images of evanescent wave,and reveals that the equiamplitude plane and the equiphase plane are not in quadrature any more,and the phase difference between longitudinal wave and transversal wave does not equal π/2,either.But the reflectivity is still kept at 100.展开更多
Based on Biot's model for fluid-saturated media,which takes the inertial,fluid viscous,mechanical couplings,compressibility of grains and fluid into account,the dispersion equations of plane waves in non-homogeneo...Based on Biot's model for fluid-saturated media,which takes the inertial,fluid viscous,mechanical couplings,compressibility of grains and fluid into account,the dispersion equations of plane waves in non-homogeneously saturated soil are established by using reverberation ray matrix method(RRMM) with the aid of Helmholtz theorem.The non-homogeneity considered is a gradient variation in material properties with depth.The propagation characteristic of elastic waves in non-homogeneously saturated soil is analyzed by numerical example in this paper.The results show that the wave number and dissipation change little for two kinds of compression along the variation direction of the material properties,however,the non-homogeneity has significant effect on the wave number and dissipation of shear wave.展开更多
By employing the reductive perturbation technique, the propagation of cylindrical and spherical ion acoustic solitary waves is studied in an unmagnetized dense relativistic plasma, consisting of relativistically degen...By employing the reductive perturbation technique, the propagation of cylindrical and spherical ion acoustic solitary waves is studied in an unmagnetized dense relativistic plasma, consisting of relativistically degenerate electrons and cold fluid ions. A modified Korteweg-de-Vries equation is derived and its numerical solutions have been analyzed to identify the basic features of electrostatic solitary structures that may form in such a degenerate Fermi plasma. Different degrees of relativistic electron degeneracy are discussed and compared. It is found that increasing number density leads to decrease the aznplitude the width of the ion acoustic solitary wave in both the cylindrical and spherical geometries. The relevance of the work to the compact astrophysical objects, particularly white dwarfs is pointed out.展开更多
In this paper,a stepwise coupled-mode model with the use of the direct global matrix approach is proposed.This method is capable of handling two-dimensional problems with either a point source in cylindrical geometry ...In this paper,a stepwise coupled-mode model with the use of the direct global matrix approach is proposed.This method is capable of handling two-dimensional problems with either a point source in cylindrical geometry or a line source in plane geometry.With the use of the direct global matrix approach,this method is numerically stable.In addition,by introducing appropriately normalized range solutions,this model is free from the numerical overflow problem.Furthermore,we put forward source conditions appropriate for the line-source problem in plane geometry.As a result,this method is capable of addressing the scenario with a line source on top of a sloping bottom.Closed-form expressions for coupling matrices are derived and applied in this paper for handling problems with pressure-release boundaries and a homogeneous water column.The numerical simulations indicate that the proposed model is accurate,efficient,and numerically stable.Consequently,this model can serve as a benchmark model in range-dependent propagation modeling.Although this method is verified by an ideal wedge problem in this paper,the formulation applies to realistic problems as well.展开更多
In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the...In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.展开更多
文摘In this artilce a new optical trap 2D array by the acoustic modulation is proposed. Based on the "called" acoustic-elasticity of the fluid embedding trapped microparticle, the expression describing the refractive index induced by cross-interference of two perpendicular ultrasonic waves is approximately derived. By simulation, the 2D array of the Graded-refractive index lenses appeared in the fluid layer with certain strain-acoustic constant and thickness. The trapping capability of the plane-wave laser beam propagating through those lenses is shown out, and the appearance of the optical trap 2D array has been affirmed.
文摘When teaching electromagnetic fields and waves, the application of Matlab program to make simulation of electromagnetic distribution and the transmission of waves, which dynamicly shows the propagation of waves, helps students learn electromagnetic fields and electromagnetic waves. This article focuses on simulating the dynamic process of the propagation, reflection and refraction of uniform plane wave in a different medium.
基金supported by the National Natural Science Foundation of China(Grant No.40974078)the Physical Sciences Division at University of Chicago
文摘Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly observed physical phenomena.It is found that,for a given propagation,if the polarization is parallel to the wave vector,so also to the Poynting vector.In such a case,the phase velocity is identical to the energy velocity;the quasi P-wave degenerates to a pure P-wave along the propagation.It is also noted that if the polarization is parallel to the Poynting vector but not to the wave vector,the propagating wave cannot be a pure P-wave.Furthermore,the polarization in a quasi P-wave may deviate from the wave vector for more than 45°,but the deviation from the Poynting vector is always less than 45°.The energy velocity of a quasi SV-wave can be larger than that of the quasi P-wave in some propagation directions,even though the phase velocity of a quasi SV-wave may never be larger than either the phase velocity or energy velocity of the quasi P-wave.Finally,in case of parameters ε=0 and δ*≠0,the polarization of a quasi P-wave has an observed symmetry at a 45°phase angle.The anisotropy of a hexagonal system solid determines if a pure P-wave can be created and what the propagation direction is for a plane wave propagating inside such a hexagonal system solid.
基金the National Natural Science Foundation of China (Grant Nos. 10972029 and 40906044)the Youth Scientific Research Foundation PLA University of Science and Technology (Grant No. 20110510)
文摘The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scat- tered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluat- ed. The influences of surface stress are discussed based on the numerical results.
基金Project (Nos 10632020 and 90715006) supported by the National Natural Science Foundation of China
文摘The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave expansion method. We show the existence of an absolute band gap of the perfect phononic crystal and linear defect modes inside the gap caused by localization of flexural waves at or near the defects. The displacement distributions show that flexural waves can transmit well along the straight linear defect created by removing one row of cylinders from the perfect phononic crystals for almost all the frequencies falling in the band gap, which indicates that this structure can act as a high efficiency waveguide. However, for bending or branching linear defects, there exist both guided and localized modes, and therefore the phononic crystals could be served as waveguides or filters.
文摘Under the circumstance of optical axis being in the incident plane,the evanescent wave of total reflection is studied when an extraordinary beam is incident from an isotropic medium upon a uniaxial crystal by using the general characteristics of uniaxial crystal and electromagnetic field.This paper presents the propagation directions of equiphase plane and the images of evanescent wave,and reveals that the equiamplitude plane and the equiphase plane are not in quadrature any more,and the phase difference between longitudinal wave and transversal wave does not equal π/2,either.But the reflectivity is still kept at 100.
基金supported by the National Natural Science Foundation of China (Grant No. 11162008)the Fund of Education Department of Gansu Province of China for Master's Tutor (1103-07)the Fundamental Research Funds for the Gansu Universities (Grant No. 1104ZTC140)
文摘Based on Biot's model for fluid-saturated media,which takes the inertial,fluid viscous,mechanical couplings,compressibility of grains and fluid into account,the dispersion equations of plane waves in non-homogeneously saturated soil are established by using reverberation ray matrix method(RRMM) with the aid of Helmholtz theorem.The non-homogeneity considered is a gradient variation in material properties with depth.The propagation characteristic of elastic waves in non-homogeneously saturated soil is analyzed by numerical example in this paper.The results show that the wave number and dissipation change little for two kinds of compression along the variation direction of the material properties,however,the non-homogeneity has significant effect on the wave number and dissipation of shear wave.
基金the Financial Support of HEC Through Indigenous 5000 Ph.D Scholarship Scheme
文摘By employing the reductive perturbation technique, the propagation of cylindrical and spherical ion acoustic solitary waves is studied in an unmagnetized dense relativistic plasma, consisting of relativistically degenerate electrons and cold fluid ions. A modified Korteweg-de-Vries equation is derived and its numerical solutions have been analyzed to identify the basic features of electrostatic solitary structures that may form in such a degenerate Fermi plasma. Different degrees of relativistic electron degeneracy are discussed and compared. It is found that increasing number density leads to decrease the aznplitude the width of the ion acoustic solitary wave in both the cylindrical and spherical geometries. The relevance of the work to the compact astrophysical objects, particularly white dwarfs is pointed out.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10734100 and 11125420)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘In this paper,a stepwise coupled-mode model with the use of the direct global matrix approach is proposed.This method is capable of handling two-dimensional problems with either a point source in cylindrical geometry or a line source in plane geometry.With the use of the direct global matrix approach,this method is numerically stable.In addition,by introducing appropriately normalized range solutions,this model is free from the numerical overflow problem.Furthermore,we put forward source conditions appropriate for the line-source problem in plane geometry.As a result,this method is capable of addressing the scenario with a line source on top of a sloping bottom.Closed-form expressions for coupling matrices are derived and applied in this paper for handling problems with pressure-release boundaries and a homogeneous water column.The numerical simulations indicate that the proposed model is accurate,efficient,and numerically stable.Consequently,this model can serve as a benchmark model in range-dependent propagation modeling.Although this method is verified by an ideal wedge problem in this paper,the formulation applies to realistic problems as well.
基金supported by the National Natural Science Foundation of China (Grant No. 10972029)
文摘In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.