A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copp...A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copper clusters. Our results show that the three-dimensional isomers of copper clusters start from Cu7 cluster and then show a tendency to form more compact structures. The results of the formation energy and the second derivative of binding energy with duster size show that besides N = 8, N =11 is also a magic number. Furthermore, it is the first time to find that the ground state of 11-atom clusters is a biplanar structure as same as the 13-atom cluster. The clear odd-even alternation as cluster size for the formation energy indicates the stability of electronic close shell existed in the range studied.展开更多
We measured the photoelectron spectra of Al_(n)C_(4)^(−)(n=2−4)clusters by using size-selected anion photoelectron spectroscopy.The structures of Al_(n)C_(4)^(−/0)(n=2−4)clusters were explored with quantum chemistry c...We measured the photoelectron spectra of Al_(n)C_(4)^(−)(n=2−4)clusters by using size-selected anion photoelectron spectroscopy.The structures of Al_(n)C_(4)^(−/0)(n=2−4)clusters were explored with quantum chemistry calculations and were determined by comparing the theoretical results with the experimental spectra.It is found that the most stable structure of Al_(2)C_(4)^(−) anion is a C_(2v)symmetry planar structure with two Al atoms interacting with two C_(2)units.In addition,Al_(2)C_(4)^(−) anion also has a D∞h symmetry linear structure with two Al atoms located at the two ends of a C_(4)chain,which is slightly higher in energy than the planar structure.The most stable structure of neutral Al_(2)C_(4)has a D∞h symmetry linear structure.The most stable structure of Al_(3)C_(4)^(−) anion is a planar structure with three Al atoms interacting with two C_(2)units.Whereas neutral Al_(3)C_(4)cluster has a C_(2v)symmetric V-shaped bent structure.The global minima structures of both Al_(4)C_(4)^(−) and neutral Al_(4)C_(4)are C_(2)h symmetry planar structures with four Al atoms interacting with the ends of two C_(2)units.Adaptive natural density partitioning analyses of Al_(n)C_(4)^(−)(n=2−4)clusters show that the interactions between the Al atoms and C_(2)units have bothσandπcharacters.展开更多
We demonstrate that charge carrier diffusion lengths of two classes of perovskites, CH3NH3PbI3-xClx and CH3NH3PbI3, are both highly sensitive to film processing conditions and optimal processing procedures are critica...We demonstrate that charge carrier diffusion lengths of two classes of perovskites, CH3NH3PbI3-xClx and CH3NH3PbI3, are both highly sensitive to film processing conditions and optimal processing procedures are critical to preserving the long carrier diffusion lengths of the perovskite films. This understanding, together with the improved cathode interface using bilayer-structured electron transporting interlayers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/ZnO, leads to the successful fabrication of highly efficient, stable and reproducible planar heterojunction CH3NH3PbI3-xCl2 solar cells with impressive power-conversion efficiencies (PCEs) up to 15.9%. A 1-square-centimeter device yielding a PCE of 12.3% has been realized, demonstrating that this simple planar structure is promising for large-area devices.展开更多
Abstract The structural and energetic properties of bimetallic AgmCun (m +n ≤ 5) in the cationic and anionic charged states have been investigated by density functional theory with relativistic effective core pote...Abstract The structural and energetic properties of bimetallic AgmCun (m +n ≤ 5) in the cationic and anionic charged states have been investigated by density functional theory with relativistic effective core potentails. The stable cationic pentamers have three-dimensional structures in contrast to anionic clusters assume planar structures. For the given cluster size the electron affinities decrease as the Cu content increases, while no clear trend can be found in adiabatic ionization potentials. The binding energy per atom also increases with the increasing Cu content and follows the order anion 〈 cation. The most probable dissociation channels of the clusters considered are also discussed.展开更多
The plane-wave expansion(PWE) method is employed to calculate the photonic band structures of metal/dielectric(M/D) periodic systems. We consider a one-dimensional(1D) M/D superlattice with a metal layer characterized...The plane-wave expansion(PWE) method is employed to calculate the photonic band structures of metal/dielectric(M/D) periodic systems. We consider a one-dimensional(1D) M/D superlattice with a metal layer characterized by a frequency-dependent dielectric function. To calculate the photonic band of such a system, we propose a new method and thus avoid solving the nonlinear eigenvalue equations. We obtained the frequency dispersions and the energy distributions of eigen-modes of 1D superlattices. This general method is applicable to calculate the photonic band of a broad class of physical systems, e.g. 2D and 3D M/D photonic crystals. For comparison, we present a simple introduction of the finite-difference(FD) method to calculate the same system, and the agreement turns out to be good. But the FD method cannot be applied to the TM modes of the M/D superlattice.展开更多
For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The ...For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The results showed that uniform amorphous alloys can be formed within a composition range of 25 at%-78 at% Ta, which falls in the maximum possible amorphization range of 22 at%-80 at% Ta predicted by the empirical model. Moreover, two metastable crystalline phases both of FCC structure, yet with different lattice constants were obtained. Interestingly, a self-assembled fractal pattern was observed in the Pd52Ta48 multilayered films after irradiation to a dose of 1×1015 Xe+/cm2 and its dimension was determined to be 1.75±0.05. The possible mechanisms for the formation of amorphous and metastable crystalline phases as well as for the growth of the fractal pattern were discussed.展开更多
文摘A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copper clusters. Our results show that the three-dimensional isomers of copper clusters start from Cu7 cluster and then show a tendency to form more compact structures. The results of the formation energy and the second derivative of binding energy with duster size show that besides N = 8, N =11 is also a magic number. Furthermore, it is the first time to find that the ground state of 11-atom clusters is a biplanar structure as same as the 13-atom cluster. The clear odd-even alternation as cluster size for the formation energy indicates the stability of electronic close shell existed in the range studied.
基金supported by the Beijing Municipal Science&Technology Commission(No.Z191100007219009)the National Natural Science Foundation of China(No.21773255)。
文摘We measured the photoelectron spectra of Al_(n)C_(4)^(−)(n=2−4)clusters by using size-selected anion photoelectron spectroscopy.The structures of Al_(n)C_(4)^(−/0)(n=2−4)clusters were explored with quantum chemistry calculations and were determined by comparing the theoretical results with the experimental spectra.It is found that the most stable structure of Al_(2)C_(4)^(−) anion is a C_(2v)symmetry planar structure with two Al atoms interacting with two C_(2)units.In addition,Al_(2)C_(4)^(−) anion also has a D∞h symmetry linear structure with two Al atoms located at the two ends of a C_(4)chain,which is slightly higher in energy than the planar structure.The most stable structure of neutral Al_(2)C_(4)has a D∞h symmetry linear structure.The most stable structure of Al_(3)C_(4)^(−) anion is a planar structure with three Al atoms interacting with two C_(2)units.Whereas neutral Al_(3)C_(4)cluster has a C_(2v)symmetric V-shaped bent structure.The global minima structures of both Al_(4)C_(4)^(−) and neutral Al_(4)C_(4)are C_(2)h symmetry planar structures with four Al atoms interacting with the ends of two C_(2)units.Adaptive natural density partitioning analyses of Al_(n)C_(4)^(−)(n=2−4)clusters show that the interactions between the Al atoms and C_(2)units have bothσandπcharacters.
文摘We demonstrate that charge carrier diffusion lengths of two classes of perovskites, CH3NH3PbI3-xClx and CH3NH3PbI3, are both highly sensitive to film processing conditions and optimal processing procedures are critical to preserving the long carrier diffusion lengths of the perovskite films. This understanding, together with the improved cathode interface using bilayer-structured electron transporting interlayers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/ZnO, leads to the successful fabrication of highly efficient, stable and reproducible planar heterojunction CH3NH3PbI3-xCl2 solar cells with impressive power-conversion efficiencies (PCEs) up to 15.9%. A 1-square-centimeter device yielding a PCE of 12.3% has been realized, demonstrating that this simple planar structure is promising for large-area devices.
基金Supported by the National Natural Science Foundation of China under Grant No. 20873036the Fund for Doctorates of Henan University of Science and Technology
文摘Abstract The structural and energetic properties of bimetallic AgmCun (m +n ≤ 5) in the cationic and anionic charged states have been investigated by density functional theory with relativistic effective core potentails. The stable cationic pentamers have three-dimensional structures in contrast to anionic clusters assume planar structures. For the given cluster size the electron affinities decrease as the Cu content increases, while no clear trend can be found in adiabatic ionization potentials. The binding energy per atom also increases with the increasing Cu content and follows the order anion 〈 cation. The most probable dissociation channels of the clusters considered are also discussed.
基金supported by the special funds for the National Basic Research Program of China(Grant No.069c031001)the National Natural Science Foundation of China(Grant No.60521001).
文摘The plane-wave expansion(PWE) method is employed to calculate the photonic band structures of metal/dielectric(M/D) periodic systems. We consider a one-dimensional(1D) M/D superlattice with a metal layer characterized by a frequency-dependent dielectric function. To calculate the photonic band of such a system, we propose a new method and thus avoid solving the nonlinear eigenvalue equations. We obtained the frequency dispersions and the energy distributions of eigen-modes of 1D superlattices. This general method is applicable to calculate the photonic band of a broad class of physical systems, e.g. 2D and 3D M/D photonic crystals. For comparison, we present a simple introduction of the finite-difference(FD) method to calculate the same system, and the agreement turns out to be good. But the FD method cannot be applied to the TM modes of the M/D superlattice.
基金supported by the National Natural Science Foundation of China (Grant No. 50971072)the Ministry of Science and Technology of China (Grant No. 2006CB605201)the Administration of Tsinghua University
文摘For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The results showed that uniform amorphous alloys can be formed within a composition range of 25 at%-78 at% Ta, which falls in the maximum possible amorphization range of 22 at%-80 at% Ta predicted by the empirical model. Moreover, two metastable crystalline phases both of FCC structure, yet with different lattice constants were obtained. Interestingly, a self-assembled fractal pattern was observed in the Pd52Ta48 multilayered films after irradiation to a dose of 1×1015 Xe+/cm2 and its dimension was determined to be 1.75±0.05. The possible mechanisms for the formation of amorphous and metastable crystalline phases as well as for the growth of the fractal pattern were discussed.