In this paper we show that the face-width of any embedding of a Halin graph(a type of planar graph) in the torus is one, and give a formula for determining the number of all nonequivalent embeddings of a Halin graph...In this paper we show that the face-width of any embedding of a Halin graph(a type of planar graph) in the torus is one, and give a formula for determining the number of all nonequivalent embeddings of a Halin graph in the torus.展开更多
基金Supported by the NNSF of China(10671073)Supported by the NSF of Jiangsu’s Universities( 07KJB110090)
文摘In this paper we show that the face-width of any embedding of a Halin graph(a type of planar graph) in the torus is one, and give a formula for determining the number of all nonequivalent embeddings of a Halin graph in the torus.