A new sub-micron photolithography tool has been realized by utilizing the interference of surface plasmon waves(SPWs) on the near surface of a silver(Ag)-clad ultraviolet(UV) planar waveguide.A laser beam with a wavel...A new sub-micron photolithography tool has been realized by utilizing the interference of surface plasmon waves(SPWs) on the near surface of a silver(Ag)-clad ultraviolet(UV) planar waveguide.A laser beam with a wavelength of 325 nm was incident into the waveguide core,and suffered a series of total internal reflections on the interfaces between the waveguide core and the cladding layers.The incident light and the reflected light induced two beams of SPWs traveling in contrary directions,which interfered with each other and formed a standing wave as a sub-micron photolithography tool.A near-field scanning optical microscope(NSOM) was employed to measure the intensity distribution of the stationary wave field of the near surface of the Ag layer of the waveguide,anastomosed with theoretical values acquired by use of finite difference time domain(FDTD) simulations.And with this sub-micron photolithography tool a SMG with a period of 79.3 nm,in good agreement with the theoretical value of 80.1 nm,was inscribed on the surface of a self-processing hybrid SiO2/ZrO2 solgel film for the first time.展开更多
文摘提出一种新的摄像机标定方法,该方法基于2D共面参照物摄像机标定方法和傅里叶条纹分析方法.将已知相位分布的平面二维正弦灰度调制条纹图作为平面标定靶,通过傅里叶条纹分析方法计算出两个截断正交相位分布,利用截断正交相位分布并结合二维正弦条纹图特点提取相应的图像特征点,建立像素坐标与2D平面坐标的对应关系.将该二维平面靶在摄像机成像空间中放置不同的位置,并完成相应的特征点提取,根据2D共面参照物摄像机标定方法即可完成摄像机标定.该方法利用平面相位测量的高准确度来提高标定特征点的提取准确度,从而提高标定准确度.实验对双摄像机系统进行了标定,标定后该系统对标定靶进行测量,标准偏差达到0 .010 mm.
基金supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos.8251063101000007, 10151063101000009,and 9451063101002082)the Scientific and Technological Plan of Guangdong Province (Grant Nos.2008B010200004, 2010B010600030, and 2009B011100003)the National Natural Science Foundation of China (Grant Nos.61078046 and 60977048)
文摘A new sub-micron photolithography tool has been realized by utilizing the interference of surface plasmon waves(SPWs) on the near surface of a silver(Ag)-clad ultraviolet(UV) planar waveguide.A laser beam with a wavelength of 325 nm was incident into the waveguide core,and suffered a series of total internal reflections on the interfaces between the waveguide core and the cladding layers.The incident light and the reflected light induced two beams of SPWs traveling in contrary directions,which interfered with each other and formed a standing wave as a sub-micron photolithography tool.A near-field scanning optical microscope(NSOM) was employed to measure the intensity distribution of the stationary wave field of the near surface of the Ag layer of the waveguide,anastomosed with theoretical values acquired by use of finite difference time domain(FDTD) simulations.And with this sub-micron photolithography tool a SMG with a period of 79.3 nm,in good agreement with the theoretical value of 80.1 nm,was inscribed on the surface of a self-processing hybrid SiO2/ZrO2 solgel film for the first time.