In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (H...In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.展开更多
A powerful terahertz(THz) pulse was produced by a p-polarized,70 fs,800 nm laser interacting with solid targets at an incident angle of 45°.The polarization of the THz emission was measured out of the laser incid...A powerful terahertz(THz) pulse was produced by a p-polarized,70 fs,800 nm laser interacting with solid targets at an incident angle of 45°.The polarization of the THz emission was measured out of the laser incident plane.The results showed that it was linearly polarized.We established a surface current model to explain this phenomenon,assuming that the transient current moving along the plasma surface was responsible for the generation of the THz emission.The model expectation and the experimental result were in good agreement.展开更多
Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly...Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly observed physical phenomena.It is found that,for a given propagation,if the polarization is parallel to the wave vector,so also to the Poynting vector.In such a case,the phase velocity is identical to the energy velocity;the quasi P-wave degenerates to a pure P-wave along the propagation.It is also noted that if the polarization is parallel to the Poynting vector but not to the wave vector,the propagating wave cannot be a pure P-wave.Furthermore,the polarization in a quasi P-wave may deviate from the wave vector for more than 45°,but the deviation from the Poynting vector is always less than 45°.The energy velocity of a quasi SV-wave can be larger than that of the quasi P-wave in some propagation directions,even though the phase velocity of a quasi SV-wave may never be larger than either the phase velocity or energy velocity of the quasi P-wave.Finally,in case of parameters ε=0 and δ*≠0,the polarization of a quasi P-wave has an observed symmetry at a 45°phase angle.The anisotropy of a hexagonal system solid determines if a pure P-wave can be created and what the propagation direction is for a plane wave propagating inside such a hexagonal system solid.展开更多
基金Supported by the High Technology Research and Development Progrannne of China (No. 2002AA633120) and the National Natural Science Foundation of China (No. 40276050).
文摘In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10925421 and 10734130)
文摘A powerful terahertz(THz) pulse was produced by a p-polarized,70 fs,800 nm laser interacting with solid targets at an incident angle of 45°.The polarization of the THz emission was measured out of the laser incident plane.The results showed that it was linearly polarized.We established a surface current model to explain this phenomenon,assuming that the transient current moving along the plasma surface was responsible for the generation of the THz emission.The model expectation and the experimental result were in good agreement.
基金supported by the National Natural Science Foundation of China(Grant No.40974078)the Physical Sciences Division at University of Chicago
文摘Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly observed physical phenomena.It is found that,for a given propagation,if the polarization is parallel to the wave vector,so also to the Poynting vector.In such a case,the phase velocity is identical to the energy velocity;the quasi P-wave degenerates to a pure P-wave along the propagation.It is also noted that if the polarization is parallel to the Poynting vector but not to the wave vector,the propagating wave cannot be a pure P-wave.Furthermore,the polarization in a quasi P-wave may deviate from the wave vector for more than 45°,but the deviation from the Poynting vector is always less than 45°.The energy velocity of a quasi SV-wave can be larger than that of the quasi P-wave in some propagation directions,even though the phase velocity of a quasi SV-wave may never be larger than either the phase velocity or energy velocity of the quasi P-wave.Finally,in case of parameters ε=0 and δ*≠0,the polarization of a quasi P-wave has an observed symmetry at a 45°phase angle.The anisotropy of a hexagonal system solid determines if a pure P-wave can be created and what the propagation direction is for a plane wave propagating inside such a hexagonal system solid.