For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The ...For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The results showed that uniform amorphous alloys can be formed within a composition range of 25 at%-78 at% Ta, which falls in the maximum possible amorphization range of 22 at%-80 at% Ta predicted by the empirical model. Moreover, two metastable crystalline phases both of FCC structure, yet with different lattice constants were obtained. Interestingly, a self-assembled fractal pattern was observed in the Pd52Ta48 multilayered films after irradiation to a dose of 1×1015 Xe+/cm2 and its dimension was determined to be 1.75±0.05. The possible mechanisms for the formation of amorphous and metastable crystalline phases as well as for the growth of the fractal pattern were discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50971072)the Ministry of Science and Technology of China (Grant No. 2006CB605201)the Administration of Tsinghua University
文摘For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The results showed that uniform amorphous alloys can be formed within a composition range of 25 at%-78 at% Ta, which falls in the maximum possible amorphization range of 22 at%-80 at% Ta predicted by the empirical model. Moreover, two metastable crystalline phases both of FCC structure, yet with different lattice constants were obtained. Interestingly, a self-assembled fractal pattern was observed in the Pd52Ta48 multilayered films after irradiation to a dose of 1×1015 Xe+/cm2 and its dimension was determined to be 1.75±0.05. The possible mechanisms for the formation of amorphous and metastable crystalline phases as well as for the growth of the fractal pattern were discussed.