期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
关于平面调和映射的Bloch常数的估计 被引量:1
1
作者 刘名生 《中国科学(A辑)》 CSCD 北大核心 2008年第8期851-858,共8页
考虑了拟正则调和映射和开的平面调和映射的Bloch常数,得到了较好的结果,所得结果推广了陈怀惠等及Grigoryan的结果.
关键词 BLOCH常数 拟正则调和映射 开的平面调和映射
原文传递
单位圆到凸域的调和映射的Schwarz导数的范数
2
作者 辜承亮 黄翠 《江西科学》 2015年第1期52-54,96,共4页
利用单位圆上的保向同胚调和映射的Schwarz导数范数的定义,研究了单位圆到凸域的调和映射的Schwarz导数的范数的性质,得到了单位圆到圆内接正六边形及正八边形的调和映射的Schwarz导数的范数。
关键词 平面调和映射 Schwarz导数范数 正六边形 正八边形
下载PDF
The Schwarz-Pick lemma for planar harmonic mappings 被引量:9
3
作者 CHEN HuaiHui 《Science China Mathematics》 SCIE 2011年第6期1101-1118,共18页
The classical Schwarz-Pick lemma for holomorphic mappings is generalized to planar harmonic mappings of the unit disk D completely. (I) For any 0 < r < 1 and 0 ρ < 1, the author constructs a closed convex do... The classical Schwarz-Pick lemma for holomorphic mappings is generalized to planar harmonic mappings of the unit disk D completely. (I) For any 0 < r < 1 and 0 ρ < 1, the author constructs a closed convex domain Er,ρ such that F((z,r)) eiαEr,ρ = {eiαz : z ∈ Er,ρ} holds for every z ∈ D, w = ρeiα and harmonic mapping F with F(D)D and F(z) = w, where △(z,r) is the pseudo-disk of center z and pseudo-radius r; conversely, for every z ∈ D, w = ρeiα and w ∈ eiαEr,ρ, there exists a harmonic mapping F such that F(D) D, F(z) = w and F(z ) = w for some z ∈ △(z,r). (II) The author establishes a Finsler metric Hz(u) on the unit disk D such that HF(z)(eiθFz(z) + e-iθFz(z)) ≤1 /(1- |z|2)holds for any z ∈ D, 0 θ 2π and harmonic mapping F with F(D)D; furthermore, this result is precise and the equality may be attained for any values of z, θ, F(z) and arg(eiθFz(z) + e-iθFz(z)). 展开更多
关键词 harmonic mappings Schwarz-Pick lemma Finsler metric
原文传递
The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings 被引量:4
4
作者 CHEN HuaiHui 《Science China Mathematics》 SCIE 2013年第11期2327-2334,共8页
The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit disk D are generalized to real harmonic mappings of the unit disk, and the results are precise. It is proved that for a harmonic ma... The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit disk D are generalized to real harmonic mappings of the unit disk, and the results are precise. It is proved that for a harmonic mapping U of D into the open interval I = (-1, 1), AU(z)/cosU(z)π/2≤4/π 1/1-|z|^2 holds for z E D, where Au(z) is the maximum dilation of U at z. The inequality is sharp for any z E D and any value of U(z), and the equality occurs for some point in D if and only if U(z) = 4Re {arctan ~a(z)}, z E D, with a M&bius transformation φa of D onto itself. 展开更多
关键词 harmonic mappings Schwarz-Pick lemma Julia lemma
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部