For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable mag...For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry.展开更多
Recent and constant demands for greater power densities and smaller sizes of electronic systems have stimulated the growth of new designs of different passive heat transfer methods such as heat pipes. Particularly, OH...Recent and constant demands for greater power densities and smaller sizes of electronic systems have stimulated the growth of new designs of different passive heat transfer methods such as heat pipes. Particularly, OHPs (Oscillating Heat Pipes) are relatively novel devices, capable of removing high heat rates over long and short distances with not much temperature drop. This study concentrates on the design, building and assembling a test rig in order to analyse the flow pattern ofdeionised water through a 5 turns flat plate oscillating heat pipe under different heat inputs, which was made in the school of engineering and materials science of the Queen Mary University of London by two energy M.Sc. students. The filling ratio of the water is 40%. Furthermore an experimental study on the OHP thermal performance is carried out in order to examine the effects of different surface wet conditions: super hydrophilic, hydrophilic and cleaned brass. It is demonstrated the formation of liquid slugs and vapour plugs of the water along the channels. The experimental results showed that the hydrophilic surface tends to be more energy efficient. The heat transfer performance of the super-hydrophilic and hydrophilic is higher than brass by 5-12% and 15-20% respectively.展开更多
基金National Key Lab for Electronic Measurement and Technology,North University of China(No.9140C120401080C12)
文摘For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry.
文摘Recent and constant demands for greater power densities and smaller sizes of electronic systems have stimulated the growth of new designs of different passive heat transfer methods such as heat pipes. Particularly, OHPs (Oscillating Heat Pipes) are relatively novel devices, capable of removing high heat rates over long and short distances with not much temperature drop. This study concentrates on the design, building and assembling a test rig in order to analyse the flow pattern ofdeionised water through a 5 turns flat plate oscillating heat pipe under different heat inputs, which was made in the school of engineering and materials science of the Queen Mary University of London by two energy M.Sc. students. The filling ratio of the water is 40%. Furthermore an experimental study on the OHP thermal performance is carried out in order to examine the effects of different surface wet conditions: super hydrophilic, hydrophilic and cleaned brass. It is demonstrated the formation of liquid slugs and vapour plugs of the water along the channels. The experimental results showed that the hydrophilic surface tends to be more energy efficient. The heat transfer performance of the super-hydrophilic and hydrophilic is higher than brass by 5-12% and 15-20% respectively.