[ Objective] To study the characteristics of florescence and pollen in Lagerstroemia speciosa. [ Method ] The process of flower opening and pollen tube germination of Lagerstroemia speciosa was observed and the pollen...[ Objective] To study the characteristics of florescence and pollen in Lagerstroemia speciosa. [ Method ] The process of flower opening and pollen tube germination of Lagerstroemia speciosa was observed and the pollen viability was determined through in vitro germination. [ Result] Sepals of L. speciosa started to diverge at 4:30 am, at 7: 00 am petals flatten up, anther diverged, and the stigma secreted a large number of mucus, it was the best time for artificial pollination. Boric acid and sucrose had a great effect on in vitro pollen germination of L. speciosa, the combination which made highest rate of pollen germination, was sucrose 150 g/L + boric acid 20 mg/L + CaCI2 10 mg/L. Through the fluorescence microscope, it was known that four hours after flowering, a lot of pollen grains germinated on the stigma, six hours after flowering, lots of pollen tubes entered the style and reached to 1/4 length of the style, 12 hours after flowering, pollen tubes concentrated into a beam forward, and reached to 1/2 length of the style, 24 hours after flowering, lots of pollen tubes entered the ovary in a beam and then fertilized and produced seeds. [ Conclusion] The results provide some basis for utilizing L. speciosa to breed.展开更多
Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Tw...Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent traits. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be ex- amined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.展开更多
The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SF...The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SFG), ground ice content and mean annual ground temperature(MAGT), were analyzed using a large quantity of drilling and measured ground temperature data. Three topographic units can be distinguished along the highway: the northern mountains, including Ela Mountain and Longstone Mountain; the medial alluvial plain and the southern Bayan Har Mountains.The horizontal distribution patterns of permafrost can be divided into four sections, from north to south: the northern continuous permafrost zone(K310-K460),the island permafrost zone(K460-K560), the southern continuous permafrost zone(K560-K630),and the discontinuous permafrost zone(K630-K670).Vertically, the permafrost lower limits(PLLs) of the discontinuous zone were 4200/4325 m, 4230/4350 m,and 4350/4450 m on the north-facing/south-facing slopes of Ela Mountain, Longstone Mountain and Bayan Har Mountains, respectively. The permafrost was generally warm, with MAGTs between-1.0°C and0°C in the northern continuous permafrost zone,approximately-0.5°C in the island permafrost zone,between-1.5°C and 0°C in the southern continuous permafrost zone, and higher than-0.5°C in the discontinuous permafrost zone. In contrast, the spatial variations in ground ice content were mainly controlled by the local soil water content and lithology.The relationships between the mean annual air temperature(MAAT) and the PLLs indicated that the PLLs varied between-3.3°C and-4.1°C for the northern Ela and Longstone Mountains and between-4.1°C and-4.6°C in the southern Bayan Har Mountains.展开更多
The purpose of this paper is to apply "LARS-WG (Long Ashton Research Station--Weather Generator)" model to simulate the climate change scenarios for Phu Luong watershed in northem Viet Nam. Results indicated that ...The purpose of this paper is to apply "LARS-WG (Long Ashton Research Station--Weather Generator)" model to simulate the climate change scenarios for Phu Luong watershed in northem Viet Nam. Results indicated that LARS-WG adequately predicted precipitation and temperature with R2 = 0.80 and 0.73, respectively. Likewise, p-value of F test = 0.062 and p-value of t test = 0.885 for precipitation, meanwhile, for temperature are 0.092 and 0.564 at 0.05 level of significance, respectively. Moreover, results also stated that mean annual precipitation increases 1.62%, 2.17% and 3.96% and mean annual temperature increases 0.6 ℃, 0.8 ℃ and 1.05 ℃ in 2020, 2030 and 2040, respectively, with respect to those from baseline periods. This study also showed that LARS-WG model was used successfully for Viet Nam's watershed conditions.展开更多
Soil organic carbon(SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a...Soil organic carbon(SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set(n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature(MAT) and mean annual precipitation(MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP(P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.展开更多
基金Supported by the National Key Technology R&D Program in EleventhFive-Year Plan of China(2006BAD01A18)the Program fromMinistry of Environmental Protection of China(Species09-2-3-1)~~
文摘[ Objective] To study the characteristics of florescence and pollen in Lagerstroemia speciosa. [ Method ] The process of flower opening and pollen tube germination of Lagerstroemia speciosa was observed and the pollen viability was determined through in vitro germination. [ Result] Sepals of L. speciosa started to diverge at 4:30 am, at 7: 00 am petals flatten up, anther diverged, and the stigma secreted a large number of mucus, it was the best time for artificial pollination. Boric acid and sucrose had a great effect on in vitro pollen germination of L. speciosa, the combination which made highest rate of pollen germination, was sucrose 150 g/L + boric acid 20 mg/L + CaCI2 10 mg/L. Through the fluorescence microscope, it was known that four hours after flowering, a lot of pollen grains germinated on the stigma, six hours after flowering, lots of pollen tubes entered the style and reached to 1/4 length of the style, 12 hours after flowering, pollen tubes concentrated into a beam forward, and reached to 1/2 length of the style, 24 hours after flowering, lots of pollen tubes entered the ovary in a beam and then fertilized and produced seeds. [ Conclusion] The results provide some basis for utilizing L. speciosa to breed.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues of Chinese Academy of Sciences(No.XDA05050503)National Key Technology Research and Development Program of China(No.2013BAD11B00)National Natural Science Foundation of China(No.41301242)
文摘Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent traits. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be ex- amined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.
基金supported financially by the Chinese Academy of Sciences (CAS) Key Research Program (Grant No. KZZD-EW-13)the Major State Basic Research Development Program of China (Grant No. 2013CBA01803)+2 种基金the National Natural Science Foundation of China (Grant No. 41271084)the Research Program of State Key Laboratory of Frozen Soil Engineering of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (Grant No. SKLFSE-ZT-10)the Natural Science Foundation of Gansu Province (Grant No. 145RJY304)
文摘The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SFG), ground ice content and mean annual ground temperature(MAGT), were analyzed using a large quantity of drilling and measured ground temperature data. Three topographic units can be distinguished along the highway: the northern mountains, including Ela Mountain and Longstone Mountain; the medial alluvial plain and the southern Bayan Har Mountains.The horizontal distribution patterns of permafrost can be divided into four sections, from north to south: the northern continuous permafrost zone(K310-K460),the island permafrost zone(K460-K560), the southern continuous permafrost zone(K560-K630),and the discontinuous permafrost zone(K630-K670).Vertically, the permafrost lower limits(PLLs) of the discontinuous zone were 4200/4325 m, 4230/4350 m,and 4350/4450 m on the north-facing/south-facing slopes of Ela Mountain, Longstone Mountain and Bayan Har Mountains, respectively. The permafrost was generally warm, with MAGTs between-1.0°C and0°C in the northern continuous permafrost zone,approximately-0.5°C in the island permafrost zone,between-1.5°C and 0°C in the southern continuous permafrost zone, and higher than-0.5°C in the discontinuous permafrost zone. In contrast, the spatial variations in ground ice content were mainly controlled by the local soil water content and lithology.The relationships between the mean annual air temperature(MAAT) and the PLLs indicated that the PLLs varied between-3.3°C and-4.1°C for the northern Ela and Longstone Mountains and between-4.1°C and-4.6°C in the southern Bayan Har Mountains.
文摘The purpose of this paper is to apply "LARS-WG (Long Ashton Research Station--Weather Generator)" model to simulate the climate change scenarios for Phu Luong watershed in northem Viet Nam. Results indicated that LARS-WG adequately predicted precipitation and temperature with R2 = 0.80 and 0.73, respectively. Likewise, p-value of F test = 0.062 and p-value of t test = 0.885 for precipitation, meanwhile, for temperature are 0.092 and 0.564 at 0.05 level of significance, respectively. Moreover, results also stated that mean annual precipitation increases 1.62%, 2.17% and 3.96% and mean annual temperature increases 0.6 ℃, 0.8 ℃ and 1.05 ℃ in 2020, 2030 and 2040, respectively, with respect to those from baseline periods. This study also showed that LARS-WG model was used successfully for Viet Nam's watershed conditions.
基金Under the auspices of National Natural Science Foundation of China(No.41301242,41201213)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA05050509)
文摘Soil organic carbon(SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set(n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature(MAT) and mean annual precipitation(MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP(P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.