The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compar...The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compared with observations, most simulations successfully simulate the observed PDO pattern and its teleconnections to the SSTs in the tropical and southern Pacific. BNU-ESM, CanESM2, CCSM4, CESM 1 -FASTCHEM, FGOALS-g2, GFDL CM3, MIROCS, and NorESM 1 -M show better performance. Compared with the temporal phases of the observed PDO in the twentieth century, only five simulations -- from CNRM^CMS, CSIRO Mk3o6.0, HadCM3, and IPSL-CMSA-LR -- simulate an evolution of the PDO similar to that derived from observation, which suggests that current coupled models can barely reproduce the observed phase shifting of the PDO. To capture characteristics of the observed PDO in the twentieth century, a requirement is that all the relevant external forcings are included in the models. How to add realistic oceanic initial states into the model may be another key point.展开更多
This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Glob...This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.展开更多
基金supported by the National Key R&D Program of China[grant number 2017YFA0603802]the National Natural Science Foundation of China[grant numbers 41661144005,41320104007,and 41575086]the CAS-PKU(Chinese Academy of Sciences-Peking University) Joint Research Program
文摘The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compared with observations, most simulations successfully simulate the observed PDO pattern and its teleconnections to the SSTs in the tropical and southern Pacific. BNU-ESM, CanESM2, CCSM4, CESM 1 -FASTCHEM, FGOALS-g2, GFDL CM3, MIROCS, and NorESM 1 -M show better performance. Compared with the temporal phases of the observed PDO in the twentieth century, only five simulations -- from CNRM^CMS, CSIRO Mk3o6.0, HadCM3, and IPSL-CMSA-LR -- simulate an evolution of the PDO similar to that derived from observation, which suggests that current coupled models can barely reproduce the observed phase shifting of the PDO. To capture characteristics of the observed PDO in the twentieth century, a requirement is that all the relevant external forcings are included in the models. How to add realistic oceanic initial states into the model may be another key point.
基金supported by the National Basic Research Program of China (973 program,Grant No.2010CB950502)the National Natural Science Foundation of China (Grant Nos.40975065 and 40821092)
文摘This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.