The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temp...The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temperature. Two kinds of group contribution models were used to estimate the molar heat capacities of both guaiacol and AGE, the average relative deviation is less than 10%. The standard molar enthalpies of combustion of guaiacol and AGE were- 3590.0 k J·mol^(-1)and- 4522.1 k J·mol^(-1) by a precise thermal isolation Oxygen Bomb Calorimeter. The standard molar enthalpies of formation of guaiacol and AGE in a liquid state at298.15 K were calculated to be- 307.95 k J·mol^(-1) and- 448.72 k J·mol^(-1), respectively, based on the standard molar enthalpies of combustion. The thermodynamic properties are useful for exploiting the new synthesis method, engineering design and industry production of AGE using guaiacol as a raw material.展开更多
AIM: To assess whether juvenile chronic ferric iron ingestion limit colitis and dysbiosis at adulthood in rats and mice. METHODS: Two sets of experiments were designed. In the first set, recently weaned mice were eith...AIM: To assess whether juvenile chronic ferric iron ingestion limit colitis and dysbiosis at adulthood in rats and mice. METHODS: Two sets of experiments were designed. In the first set, recently weaned mice were either orally administered ferrous (Fe2+) iron salt or ferric (Fe3+) microencapsulated iron for 6 wk. The last week of experiments trinitrobenzene sulfonic acid (TNBS) colitis was induced. In the second set, juvenile rats received the microencapsulated ferric iron for 6 wk and were also submitted to TNBS colitis during the last week of experiments. In both sets of experiments, animals were sacrificed 7 d after TNBS instillation. Severity of the inflammation was assessed by scoring macroscopic lesions and quantifying colonic myeloperoxidase (MPO) activity. Alteration of the microflora profile was estimated usingquantitative polymerase chain reaction (qPCR) by measuring the evolution of total caecal microflora, Bacteroidetes, Firmicutes and enterobacteria. RESULTS: Neither ferrous nor ferric iron daily exposures at the juvenile period result in any effect in control animals at adulthood although ferrous iron repeated administration in infancy limited weight gain. Ferrous iron was unable to limit the experimental colitis (1.71 ± 0.27 MPO U/mg proteinvs 2.47 ± 0.22 MPO U/mg protein in colitic mice). In contrast, ferric iron significantly prevented the increase of MPO activity (1.64 ± 0.14 MPO U/mg protein) in TNBS-induced colitis. Moreover, this positive effect was observed at both the doses of ferric iron used (75 and 150 mg/kg per day po - 6 wk). In the study we also compared, in both rats and mice, the consequences of chronic repeated low level exposure to ferric iron (75 mg/kg per day po - 6 wk) on TNBS-induced colitis and its related dysbiosis. We confirmed that ferric iron limited the TNBS-induced increase of MPO activity in both the rodent species. Furthermore, we assessed the ferric iron incidence on TNBS-induced intestinal microbiota dysbiosis. At first, we needed to optimize the isolation and quantify DNA copy numbers using standard curves to perform by qPCR this interspecies comparison. Using this approach, we determined that total microflora was similar in control rats and mice and was mainly composed of Firmicutes and Bacteroidetes at a ratio of 10/1. Ferric juvenile administration did not modify the microflora profile in control animals. Total microflora numbers remained unchanged whichever experimental conditions studied. Following TNBS-induced colitis, the Firmicutes/Bacteroidetes ratio was altered resulting in a decrease of the Firmicutes numbers and an increase of the Bacteroidetes numbers typical of a gut inflammatory reaction. In parallel, the subdominant population, the enterobacteria was also increased. However, ferric iron supplementation for the juvenile period prevented the increase of Bacteroidetes and of enterobacteria numbers consecutive to the colitis in both the studied species at adulthood.CONCLUSION: Rats and mice juvenile chronic ferric iron ingestion prevents colitis and dysbiosis at adulthood as assessed by the first interspecies comparison.展开更多
Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduce...Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduces quality of life. As the aging population expands, the need for interventional strategies to prevent cognitive decline has become more pressing. Fortunately, several major lifestyle factors have proven effective at combating hippocampal aging, the most well-known of which are environmental enrichment and exercise. While the evidence supporting the beneficial nature of these factors is substantial, a less well-understood factor may also contribute to healthy cognitive aging: social engagement. We review the evidence supporting the role of social engagement in preserving hippocampal function in old age. In elderly humans, high levels of social engagement correlate with better hippocampal function, yet there is a dearth of work to indicate a causative role. Existing rodent literature is also limited but has begun to provide causative evidence and establish candidate mechanisms. Summed together, while many unanswered questions remain, it is clear that social engagement is a viable lifestyle factor for preserving cognitive function in old age. Social integration across the lifespan warrants more investigation and more appreciation when designing living circumstances for the elderly.展开更多
Plant extracts could turn out to be herbicides used in weed control. We evaluated the herbicidal effect of seven plants from the Al-Qassim Region of Saudi Arabia on germination and growth of Phalaris minor, Echinochlo...Plant extracts could turn out to be herbicides used in weed control. We evaluated the herbicidal effect of seven plants from the Al-Qassim Region of Saudi Arabia on germination and growth of Phalaris minor, Echinochloa crusgalli, Portulaca oleracea and Lactuca sativa. In the laboratory, plant extracts at 5, 10, 20 and 40 g/L inhibited the germination and seedling growth of test seeds. P. minor and P. oleracea were more sensitive to the extracts than L. sativa and E. crusgalli. The germination of either P. minor or P. oleracea were completely inhibited by Prosopisjuliflora at 10 g/L and by Rumex vesicarius and Teucrium baccatus at 20 g/L. Extract of Pulicaria undulate completely inhibited germination of target seeds at concentrations ranged from l 0 g/L to 40 g/L. The rank order of bioactivity was Prosopis jul(17ora 〉 Pulicaria undulata 〉 Rumex vesicarius 〉 Withania somnifera 〉 Teucrium baccatus 〉 Artemisia monosperma 〉 Anvillea garcinii. In the greenhouse trial, the extracts of seven plant species at 30, 60 and 90 g/L reduced growth of six-weeks-old target plants. Anvillea garcinii and Prosopisjuliflora showed the greatest effects. At 90 g/L, the reduction in the growth of target species reached between 20% and 30% for Anvillea garcinii and between I 1% and 25% for Prosopis juliflora. Overall, Prosopis juliflora, Pulicaria undulata, Anvillea garcinii and Rumex vesicarius had potential for use as natural herbicides or for development as novel plant-derived herbicides.展开更多
文摘The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temperature. Two kinds of group contribution models were used to estimate the molar heat capacities of both guaiacol and AGE, the average relative deviation is less than 10%. The standard molar enthalpies of combustion of guaiacol and AGE were- 3590.0 k J·mol^(-1)and- 4522.1 k J·mol^(-1) by a precise thermal isolation Oxygen Bomb Calorimeter. The standard molar enthalpies of formation of guaiacol and AGE in a liquid state at298.15 K were calculated to be- 307.95 k J·mol^(-1) and- 448.72 k J·mol^(-1), respectively, based on the standard molar enthalpies of combustion. The thermodynamic properties are useful for exploiting the new synthesis method, engineering design and industry production of AGE using guaiacol as a raw material.
基金Supported by Institut Polytechnique LaSalle Beauvais
文摘AIM: To assess whether juvenile chronic ferric iron ingestion limit colitis and dysbiosis at adulthood in rats and mice. METHODS: Two sets of experiments were designed. In the first set, recently weaned mice were either orally administered ferrous (Fe2+) iron salt or ferric (Fe3+) microencapsulated iron for 6 wk. The last week of experiments trinitrobenzene sulfonic acid (TNBS) colitis was induced. In the second set, juvenile rats received the microencapsulated ferric iron for 6 wk and were also submitted to TNBS colitis during the last week of experiments. In both sets of experiments, animals were sacrificed 7 d after TNBS instillation. Severity of the inflammation was assessed by scoring macroscopic lesions and quantifying colonic myeloperoxidase (MPO) activity. Alteration of the microflora profile was estimated usingquantitative polymerase chain reaction (qPCR) by measuring the evolution of total caecal microflora, Bacteroidetes, Firmicutes and enterobacteria. RESULTS: Neither ferrous nor ferric iron daily exposures at the juvenile period result in any effect in control animals at adulthood although ferrous iron repeated administration in infancy limited weight gain. Ferrous iron was unable to limit the experimental colitis (1.71 ± 0.27 MPO U/mg proteinvs 2.47 ± 0.22 MPO U/mg protein in colitic mice). In contrast, ferric iron significantly prevented the increase of MPO activity (1.64 ± 0.14 MPO U/mg protein) in TNBS-induced colitis. Moreover, this positive effect was observed at both the doses of ferric iron used (75 and 150 mg/kg per day po - 6 wk). In the study we also compared, in both rats and mice, the consequences of chronic repeated low level exposure to ferric iron (75 mg/kg per day po - 6 wk) on TNBS-induced colitis and its related dysbiosis. We confirmed that ferric iron limited the TNBS-induced increase of MPO activity in both the rodent species. Furthermore, we assessed the ferric iron incidence on TNBS-induced intestinal microbiota dysbiosis. At first, we needed to optimize the isolation and quantify DNA copy numbers using standard curves to perform by qPCR this interspecies comparison. Using this approach, we determined that total microflora was similar in control rats and mice and was mainly composed of Firmicutes and Bacteroidetes at a ratio of 10/1. Ferric juvenile administration did not modify the microflora profile in control animals. Total microflora numbers remained unchanged whichever experimental conditions studied. Following TNBS-induced colitis, the Firmicutes/Bacteroidetes ratio was altered resulting in a decrease of the Firmicutes numbers and an increase of the Bacteroidetes numbers typical of a gut inflammatory reaction. In parallel, the subdominant population, the enterobacteria was also increased. However, ferric iron supplementation for the juvenile period prevented the increase of Bacteroidetes and of enterobacteria numbers consecutive to the colitis in both the studied species at adulthood.CONCLUSION: Rats and mice juvenile chronic ferric iron ingestion prevents colitis and dysbiosis at adulthood as assessed by the first interspecies comparison.
基金partially supported by a R00 Pathway to Independence Award from NIH/NINDS(R00NS089938)(to EDK)
文摘Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduces quality of life. As the aging population expands, the need for interventional strategies to prevent cognitive decline has become more pressing. Fortunately, several major lifestyle factors have proven effective at combating hippocampal aging, the most well-known of which are environmental enrichment and exercise. While the evidence supporting the beneficial nature of these factors is substantial, a less well-understood factor may also contribute to healthy cognitive aging: social engagement. We review the evidence supporting the role of social engagement in preserving hippocampal function in old age. In elderly humans, high levels of social engagement correlate with better hippocampal function, yet there is a dearth of work to indicate a causative role. Existing rodent literature is also limited but has begun to provide causative evidence and establish candidate mechanisms. Summed together, while many unanswered questions remain, it is clear that social engagement is a viable lifestyle factor for preserving cognitive function in old age. Social integration across the lifespan warrants more investigation and more appreciation when designing living circumstances for the elderly.
文摘Plant extracts could turn out to be herbicides used in weed control. We evaluated the herbicidal effect of seven plants from the Al-Qassim Region of Saudi Arabia on germination and growth of Phalaris minor, Echinochloa crusgalli, Portulaca oleracea and Lactuca sativa. In the laboratory, plant extracts at 5, 10, 20 and 40 g/L inhibited the germination and seedling growth of test seeds. P. minor and P. oleracea were more sensitive to the extracts than L. sativa and E. crusgalli. The germination of either P. minor or P. oleracea were completely inhibited by Prosopisjuliflora at 10 g/L and by Rumex vesicarius and Teucrium baccatus at 20 g/L. Extract of Pulicaria undulate completely inhibited germination of target seeds at concentrations ranged from l 0 g/L to 40 g/L. The rank order of bioactivity was Prosopis jul(17ora 〉 Pulicaria undulata 〉 Rumex vesicarius 〉 Withania somnifera 〉 Teucrium baccatus 〉 Artemisia monosperma 〉 Anvillea garcinii. In the greenhouse trial, the extracts of seven plant species at 30, 60 and 90 g/L reduced growth of six-weeks-old target plants. Anvillea garcinii and Prosopisjuliflora showed the greatest effects. At 90 g/L, the reduction in the growth of target species reached between 20% and 30% for Anvillea garcinii and between I 1% and 25% for Prosopis juliflora. Overall, Prosopis juliflora, Pulicaria undulata, Anvillea garcinii and Rumex vesicarius had potential for use as natural herbicides or for development as novel plant-derived herbicides.