Purpose: The aims of this study were to assess differences of limb symmetry index (LSI) in strength- and coordination-related tasks between high-level, competitive, noninjured ski racers of different age-related pe...Purpose: The aims of this study were to assess differences of limb symmetry index (LSI) in strength- and coordination-related tasks between high-level, competitive, noninjured ski racers of different age-related performance levels and to prospectively assess limb differences as a possible risk factor for traumatic and overuse injury in youth ski racers. Methods: The study (Study 1) included 285 high-level competitive ski racers (125 females, 160 males) of 3 age-related performance levels and based on the school system: 95 youth (10-14 years, secondary modem school), 107 adolescent (15-19 years, grammar school), and 83 elite athletes (20-34 years). To investigate the second aim (Study 2), 67 of the 95 youth athletes were included and any traumatic or overuse injuries were prospectively recorded over 2 seasons. All athletes performed 4 unilateral tests (strength related: one-leg counter movement jump (OL-CMJ) and one-leg isometric/isokinetic press strength test (OL-ILS); coordination related: one-leg stability test (OL-ST) and one-leg speedy jump test (OL-SJ)). The LSI was calculated by dividing the dominant leg by the nondominant leg and multiplying by 100. Kruskal-Wallis H tests and binary logistic regression analyses were conducted. Results: There were significant differences between the LSI of the 3 age-related performance-level groups only in the strength-related tests: the OL-CMJ (X^2(2, 285) = 9.09; p = 0.01) and the OL-ILS (X^2(2,285) = 14.79; p 〈 0.01). The LSI for OL-ILS was found to be a significant risk factor for traumatic injury in youth ski racers (Wald = 7.08; p 〈 0.01). No significant risk factors were found for overuse injuries. Conclusion: Younger athletes display slightly greater LSI values only in the strength-related tests. The cut-off value of limb differences of 〈 10% for return to sport decisions seems to be appropriate for elite athletes, but for youth and adolescent athletes it has to be critically discussed. It seems to be necessary to define thresholds based on specific performance tasks (strength vs. coordination related) rather than on generalizations, and age-related performance levels must be considered. Limb differences in unilateral leg extension strength represent a significant injury risk factor in youth ski racers.2018 Published by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
文摘Purpose: The aims of this study were to assess differences of limb symmetry index (LSI) in strength- and coordination-related tasks between high-level, competitive, noninjured ski racers of different age-related performance levels and to prospectively assess limb differences as a possible risk factor for traumatic and overuse injury in youth ski racers. Methods: The study (Study 1) included 285 high-level competitive ski racers (125 females, 160 males) of 3 age-related performance levels and based on the school system: 95 youth (10-14 years, secondary modem school), 107 adolescent (15-19 years, grammar school), and 83 elite athletes (20-34 years). To investigate the second aim (Study 2), 67 of the 95 youth athletes were included and any traumatic or overuse injuries were prospectively recorded over 2 seasons. All athletes performed 4 unilateral tests (strength related: one-leg counter movement jump (OL-CMJ) and one-leg isometric/isokinetic press strength test (OL-ILS); coordination related: one-leg stability test (OL-ST) and one-leg speedy jump test (OL-SJ)). The LSI was calculated by dividing the dominant leg by the nondominant leg and multiplying by 100. Kruskal-Wallis H tests and binary logistic regression analyses were conducted. Results: There were significant differences between the LSI of the 3 age-related performance-level groups only in the strength-related tests: the OL-CMJ (X^2(2, 285) = 9.09; p = 0.01) and the OL-ILS (X^2(2,285) = 14.79; p 〈 0.01). The LSI for OL-ILS was found to be a significant risk factor for traumatic injury in youth ski racers (Wald = 7.08; p 〈 0.01). No significant risk factors were found for overuse injuries. Conclusion: Younger athletes display slightly greater LSI values only in the strength-related tests. The cut-off value of limb differences of 〈 10% for return to sport decisions seems to be appropriate for elite athletes, but for youth and adolescent athletes it has to be critically discussed. It seems to be necessary to define thresholds based on specific performance tasks (strength vs. coordination related) rather than on generalizations, and age-related performance levels must be considered. Limb differences in unilateral leg extension strength represent a significant injury risk factor in youth ski racers.2018 Published by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/).