针对传统的补偿控制策略存在相位失真、有功功率消耗大的问题,提出一种优化补偿控制策略.该策略通过注入动态电压恢复器(dynamic voltage restorer,DVR)有功功率的大小来优化直流侧电压的调节量,并对优化补偿策略的补偿特性进行系统分析...针对传统的补偿控制策略存在相位失真、有功功率消耗大的问题,提出一种优化补偿控制策略.该策略通过注入动态电压恢复器(dynamic voltage restorer,DVR)有功功率的大小来优化直流侧电压的调节量,并对优化补偿策略的补偿特性进行系统分析;针对逆变单元输出受到非线性和冲击性负载扰动的问题,建立了一种混合级联H桥多电平逆变拓扑,分析其结构及工作原理,完成了多电平DVR数字系统的设计,包括软硬件的设计.在Chroma6590可编程交流电源上模拟电网电压,并在该系统上进行并网补偿试验.仿真与试验结果表明,所设计的DVR系统补偿效果很好,能够实现装置输出有功功率最小并延长补偿时间,有效减少输出谐波.展开更多
For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear l...For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.展开更多
文摘针对传统的补偿控制策略存在相位失真、有功功率消耗大的问题,提出一种优化补偿控制策略.该策略通过注入动态电压恢复器(dynamic voltage restorer,DVR)有功功率的大小来优化直流侧电压的调节量,并对优化补偿策略的补偿特性进行系统分析;针对逆变单元输出受到非线性和冲击性负载扰动的问题,建立了一种混合级联H桥多电平逆变拓扑,分析其结构及工作原理,完成了多电平DVR数字系统的设计,包括软硬件的设计.在Chroma6590可编程交流电源上模拟电网电压,并在该系统上进行并网补偿试验.仿真与试验结果表明,所设计的DVR系统补偿效果很好,能够实现装置输出有功功率最小并延长补偿时间,有效减少输出谐波.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.