A limiting amplifier (LA) IC implemented in TSMC standard 0.25μm CMOS technology is described.Active inductor loads and direct-coupled technology are employed to increase the gain,broaden the bandwidth,reduce the pow...A limiting amplifier (LA) IC implemented in TSMC standard 0.25μm CMOS technology is described.Active inductor loads and direct-coupled technology are employed to increase the gain,broaden the bandwidth,reduce the power dissipation,and keep a tolerable noise performance.Under a 3.3V supply voltage,the LA core achieves a gain of 50-dB with a power consumption below 40mW.The measured input sensitivity of the amplifier is better than 5m V _ pp .It can operate at bit rates up to 7Gb/s with an rms jitter of 0.03 UI or less.The chip area is only 0.70mm×0.70mm.According to the measurement results,this IC is expected to work at the standard bit rate levels of 2.5,3.125,and 5Gb/s.展开更多
A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power netwo...A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.展开更多
In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is...In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.展开更多
This paper presents a low noise, 1.25Gb/s and 124dBΩ front-end amplifier that is designed and fabricated in 0.25μm CMOS technology for optical communication applications. Active inductor shunt peaking technology and...This paper presents a low noise, 1.25Gb/s and 124dBΩ front-end amplifier that is designed and fabricated in 0.25μm CMOS technology for optical communication applications. Active inductor shunt peaking technology and noise optimization are used in the design of a trans-impedance amplifier,which overcomes the problem of inadequate bandwidth caused by the large parasitical capacitor of the CMOS photodiode. Experimental results indicate that with a parasitical capacitance of 2pF,this circuit works at 1.25Gb/s. A clear eye diagram is obtained with an input optical signal of - 17dBm. With a power supply of 3.3V, the front-end amplifier consumes 122mW and provides a 660mV differential output.展开更多
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p...Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs.展开更多
A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous...A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous reactive power theory based algorithm was unsatisfactory in terms of isolating positive sequence fundamental active components exactly under non-ideal mains voltages. So, a modified ip-iq reference current calculation method was presented. With usage of the new method, not only the positive sequence but also the fundamental active current components can be accurately isolated from load current. A deadbeat closed-loop control model is built in order to eliminate both delay error and tracking error between reference voltages and compensation voltages under unbalanced and distorted mains voltages. Computer simulation results show that the proposed strategy is effective with better tracking ability and lower total harmonic distortion (THD). The strategy is also applied to a 10 kV substation with a local electrolysis manganese plant injecting a large amount of harmonics into the power system, and is proved to be more practical and efficient.展开更多
An improved encapsulation method of a sensing element for a cement-based piezoelectric sensor used in civil engineering structure was developed and some tests were carried out for validating this method. The cement-ba...An improved encapsulation method of a sensing element for a cement-based piezoelectric sensor used in civil engineering structure was developed and some tests were carried out for validating this method. The cement-based piezoelectric sensor of this kind is mainly used in concrete structure due to its compatibility with concrete, and the encapsulation method of its sensing element is important to the effectiveness and accuracy of the transfer of the stress from concrete to the sensing element. The sensor′s measurement error of the previous encapsulation method, which was induced by the area of the encapsulation material and the inherent difference of Young′s modulus between cement and encapsulation material, was analyzed theoretically using parallel model. In the improved method, the error is minimized by decreasing the area of the encapsulation material and changing the configuration of the cement and piezoelectric material in the sensor. Two sensors made by the previous and improved methods were embedded in two prisms respectively and the prisms were compressed on Material Test System. Through the comparison of the measurement errors of the two sensors, the improved method was evaluated. The test results show that the improved encapsulation method is effective and feasible.展开更多
This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model...This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.展开更多
A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase...A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase column-parallel circuit based on two floating gate inverters and switched-capacitor network.The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step.A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step,which can reduce the clock step from 2 n to 2 (n/2+1).The floating gate inverters are implemented to reduce the power consumption.Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter,which can equalize the coupling path in three phases of the proposed circuit.This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18μm process.Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10MHz.The power consumption of this circuit is less than 36.5μW with a 3.3V power supply.The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.展开更多
There is a certain coupling relationship among the main circuit parameters of a single-phase shunt active power filter(SAPF),which has a great influence on the reasonable selection of various parameter values.By analy...There is a certain coupling relationship among the main circuit parameters of a single-phase shunt active power filter(SAPF),which has a great influence on the reasonable selection of various parameter values.By analyzing the calculation methods of the inductance of alternating current(AC)side and the voltage and capacitance values of direct current(DC)side in the existing single/three-phase SAPF main circuit,a specific single-phase SAPF circuit parameter analytical expression was obtained.Aiming at the coupling relationship among the variables in the resulting expression,the model was optimized and analyzed in MATLAB,and a complete set of parameters design scheme was obtained,which ensure the comprehensive optimization target of the post-harmonic content below 2% is compensated under a specific load.The simulation and experimental procedures verify the correctness of the selected parameters.展开更多
The new reality of smart distribution systems with use of generation sources of small and medium sizes brings new challenges for the operation of these systems. The complexity and the large number of nodes requires us...The new reality of smart distribution systems with use of generation sources of small and medium sizes brings new challenges for the operation of these systems. The complexity and the large number of nodes requires use of methods which can reduce the processing time of algorithms such as power flow, allowing its use in real time. This paper presents a known methodology for calculating the power flow in three phases using backward/forward sweep method, and also considering other network elements such as voltage regulators, shunt capacitors and sources of dispersed generation of types PV (active power and voltage) and PQ (active and reactive power). After that, new elements are introduced that allow the parallelization of this algorithm and an adequate distribution of work between the available processors. The algorithm was implemented using a multi-tiered architecture; the processing times were measured in many network configurations and compared with the same algorithm in the serial version.展开更多
This paper investigates the usage of passive harmonic filters to mitigate harmonic distortions when two resonant points are present in a system caused by shunt capacitors used for power factor correction and bus volta...This paper investigates the usage of passive harmonic filters to mitigate harmonic distortions when two resonant points are present in a system caused by shunt capacitors used for power factor correction and bus voltage regulation. Six scenarios were investigated using DIgSILENT 14 power factor)' software. The investigations are with and without power factor correction and capacitors used to increase bus voltage. Passive harmonic filters are designed to reduce harmonic distortions at the PCC (point of common coupling) to fall within the IEEE 519 harmonic voltage and current limits caused by parallel resonance. The results of the case studies are analysed to evaluate the effectiveness of the filter design.展开更多
This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by ...This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.展开更多
文摘A limiting amplifier (LA) IC implemented in TSMC standard 0.25μm CMOS technology is described.Active inductor loads and direct-coupled technology are employed to increase the gain,broaden the bandwidth,reduce the power dissipation,and keep a tolerable noise performance.Under a 3.3V supply voltage,the LA core achieves a gain of 50-dB with a power consumption below 40mW.The measured input sensitivity of the amplifier is better than 5m V _ pp .It can operate at bit rates up to 7Gb/s with an rms jitter of 0.03 UI or less.The chip area is only 0.70mm×0.70mm.According to the measurement results,this IC is expected to work at the standard bit rate levels of 2.5,3.125,and 5Gb/s.
文摘A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.
文摘In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.
文摘This paper presents a low noise, 1.25Gb/s and 124dBΩ front-end amplifier that is designed and fabricated in 0.25μm CMOS technology for optical communication applications. Active inductor shunt peaking technology and noise optimization are used in the design of a trans-impedance amplifier,which overcomes the problem of inadequate bandwidth caused by the large parasitical capacitor of the CMOS photodiode. Experimental results indicate that with a parasitical capacitance of 2pF,this circuit works at 1.25Gb/s. A clear eye diagram is obtained with an input optical signal of - 17dBm. With a power supply of 3.3V, the front-end amplifier consumes 122mW and provides a 660mV differential output.
文摘Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs.
基金Project(JC200903180555A) supported by Shenzhen City Science and Technology Plan, China
文摘A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous reactive power theory based algorithm was unsatisfactory in terms of isolating positive sequence fundamental active components exactly under non-ideal mains voltages. So, a modified ip-iq reference current calculation method was presented. With usage of the new method, not only the positive sequence but also the fundamental active current components can be accurately isolated from load current. A deadbeat closed-loop control model is built in order to eliminate both delay error and tracking error between reference voltages and compensation voltages under unbalanced and distorted mains voltages. Computer simulation results show that the proposed strategy is effective with better tracking ability and lower total harmonic distortion (THD). The strategy is also applied to a 10 kV substation with a local electrolysis manganese plant injecting a large amount of harmonics into the power system, and is proved to be more practical and efficient.
基金Supported by Hong Kong Research Grant Council to HKUSTunder grant HKUST6212/O2ENational Science Fund forDistinguished Young Scholars of China(No.50425824).
文摘An improved encapsulation method of a sensing element for a cement-based piezoelectric sensor used in civil engineering structure was developed and some tests were carried out for validating this method. The cement-based piezoelectric sensor of this kind is mainly used in concrete structure due to its compatibility with concrete, and the encapsulation method of its sensing element is important to the effectiveness and accuracy of the transfer of the stress from concrete to the sensing element. The sensor′s measurement error of the previous encapsulation method, which was induced by the area of the encapsulation material and the inherent difference of Young′s modulus between cement and encapsulation material, was analyzed theoretically using parallel model. In the improved method, the error is minimized by decreasing the area of the encapsulation material and changing the configuration of the cement and piezoelectric material in the sensor. Two sensors made by the previous and improved methods were embedded in two prisms respectively and the prisms were compressed on Material Test System. Through the comparison of the measurement errors of the two sensors, the improved method was evaluated. The test results show that the improved encapsulation method is effective and feasible.
基金Supported by the National Basic Research Program of China ( No. 2007CB714007) , the National Natural Science Foundation of China ( No. 50975149) , and the Important National Science & Technology Specific Projects of China (No. 2009ZX04014-.035, 2009ZX04001-042-02).
文摘This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.
基金Supported by National Natural Science Foundation of China (No.60806010,No.60976030)
文摘A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase column-parallel circuit based on two floating gate inverters and switched-capacitor network.The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step.A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step,which can reduce the clock step from 2 n to 2 (n/2+1).The floating gate inverters are implemented to reduce the power consumption.Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter,which can equalize the coupling path in three phases of the proposed circuit.This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18μm process.Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10MHz.The power consumption of this circuit is less than 36.5μW with a 3.3V power supply.The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)+2 种基金Natural Science Foundation of Gansu Province(No.1610RJZA042)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)Scientific Research Program of Colleges and Universities in Gansu Province(No.2016B-032)。
文摘There is a certain coupling relationship among the main circuit parameters of a single-phase shunt active power filter(SAPF),which has a great influence on the reasonable selection of various parameter values.By analyzing the calculation methods of the inductance of alternating current(AC)side and the voltage and capacitance values of direct current(DC)side in the existing single/three-phase SAPF main circuit,a specific single-phase SAPF circuit parameter analytical expression was obtained.Aiming at the coupling relationship among the variables in the resulting expression,the model was optimized and analyzed in MATLAB,and a complete set of parameters design scheme was obtained,which ensure the comprehensive optimization target of the post-harmonic content below 2% is compensated under a specific load.The simulation and experimental procedures verify the correctness of the selected parameters.
文摘The new reality of smart distribution systems with use of generation sources of small and medium sizes brings new challenges for the operation of these systems. The complexity and the large number of nodes requires use of methods which can reduce the processing time of algorithms such as power flow, allowing its use in real time. This paper presents a known methodology for calculating the power flow in three phases using backward/forward sweep method, and also considering other network elements such as voltage regulators, shunt capacitors and sources of dispersed generation of types PV (active power and voltage) and PQ (active and reactive power). After that, new elements are introduced that allow the parallelization of this algorithm and an adequate distribution of work between the available processors. The algorithm was implemented using a multi-tiered architecture; the processing times were measured in many network configurations and compared with the same algorithm in the serial version.
文摘This paper investigates the usage of passive harmonic filters to mitigate harmonic distortions when two resonant points are present in a system caused by shunt capacitors used for power factor correction and bus voltage regulation. Six scenarios were investigated using DIgSILENT 14 power factor)' software. The investigations are with and without power factor correction and capacitors used to increase bus voltage. Passive harmonic filters are designed to reduce harmonic distortions at the PCC (point of common coupling) to fall within the IEEE 519 harmonic voltage and current limits caused by parallel resonance. The results of the case studies are analysed to evaluate the effectiveness of the filter design.
文摘This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.