基于多有源桥(multiple active bridge,MAB)的电力电子变压器(power electronic transformer,PET)具有“模块化,大规模,高复杂度”的特点,相比与其他基于双端口功率模块的PET拓扑,其电磁暂态加速仿真面临更大的困难。为提高仿真效率与CP...基于多有源桥(multiple active bridge,MAB)的电力电子变压器(power electronic transformer,PET)具有“模块化,大规模,高复杂度”的特点,相比与其他基于双端口功率模块的PET拓扑,其电磁暂态加速仿真面临更大的困难。为提高仿真效率与CPU利用率,文中提出一种适用于MAB型PET的并行等效建模方法。首先,根据“变压器端口解耦”的思路,建立PET串行等效模型。然后,利用所提等效方法的高度可并行性,给出等效模型多线程并行仿真框架,并进行并行算法评价与影响因素分析。通过PSCAD/EMTDC仿真验证,所提等效模型能够对详细模型进行多工况高度拟合,串行等效模型加速比可达2~3个数量级。在最优并行线程数下,并行等效模型可实现对串行模型2~3倍的二次加速。展开更多
文摘基于多有源桥(multiple active bridge,MAB)的电力电子变压器(power electronic transformer,PET)具有“模块化,大规模,高复杂度”的特点,相比与其他基于双端口功率模块的PET拓扑,其电磁暂态加速仿真面临更大的困难。为提高仿真效率与CPU利用率,文中提出一种适用于MAB型PET的并行等效建模方法。首先,根据“变压器端口解耦”的思路,建立PET串行等效模型。然后,利用所提等效方法的高度可并行性,给出等效模型多线程并行仿真框架,并进行并行算法评价与影响因素分析。通过PSCAD/EMTDC仿真验证,所提等效模型能够对详细模型进行多工况高度拟合,串行等效模型加速比可达2~3个数量级。在最优并行线程数下,并行等效模型可实现对串行模型2~3倍的二次加速。