A modified extended binary Euclid' s algorithm which is more regularly iterative for computing an inversion in GF(2^m) is presented. Based on above modified algorithm, a serial-in serial-out architecture is propose...A modified extended binary Euclid' s algorithm which is more regularly iterative for computing an inversion in GF(2^m) is presented. Based on above modified algorithm, a serial-in serial-out architecture is proposed. It has area complexity of O(m), latency of 5m - 2, and throughput of 1/m. Compared with other serial systolic arehiteetures, the proposed one has the smallest area complexity, shorter latency. It is highly regular, modular, and thus well suited for high-speed VLSI design.展开更多
A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the...A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.展开更多
This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is cons...This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.展开更多
文摘A modified extended binary Euclid' s algorithm which is more regularly iterative for computing an inversion in GF(2^m) is presented. Based on above modified algorithm, a serial-in serial-out architecture is proposed. It has area complexity of O(m), latency of 5m - 2, and throughput of 1/m. Compared with other serial systolic arehiteetures, the proposed one has the smallest area complexity, shorter latency. It is highly regular, modular, and thus well suited for high-speed VLSI design.
基金Supported by the Natural Science Foundation of Tianjin (No. 11JCZDJC15800)the National Natural Science Foundation of China(No. 61003306)
文摘A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51421004 & 51405369)the National Key Basic Research Program of China (Grant No. 2015CB057400)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2014M560766)the China Scholarship Council,and the Fundamental Research Funds for the Central Universities(Grant No. xjj2014107)
文摘This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.