The 4TPS-PS parallel platform designed for a stabilization and automatic tracking system is a novel lower-mobility parallel mechanism. In the first part of this paper, the structure of the platform is described and th...The 4TPS-PS parallel platform designed for a stabilization and automatic tracking system is a novel lower-mobility parallel mechanism. In the first part of this paper, the structure of the platform is described and the kinematics model is built. The workspace of the platform is defined as the full reachable rotation workspace when the Z coordinate dimension of the upper plate varies continuously. A fast searching method of the full reachable workspace is presented, after which the inverse kinematics of the platform is deduced. The forward and inverse solutions of the speed and force of the platform are deduced. According to the characteristic of the 4TPS-PS platform’s structure, a fast searching algorithm of the maximum generalized speed and maximum generalized force output by the upper plate is put forward based on the forward and inverse solutions of the platform’s speed and force. The 4TPS-PS platform prototype built by the State Key Laboratory of Fluid Power Transmission and Control of China is taken as the research subject. The full reachable rotation workspace of the prototype is computed out and analyzed. The curves of maximum generalized speed and maximum generalized force of the prototype are computed out and plotted. Finally, the com- puting and analyzing results of the operating characteristics are confirmed through the experiment.展开更多
Architecture singularity of a parallel mechanism with five degrees of freedom (DOF) is analyzed. Such mechanism consists of a movable platform connected to the base by five active limbs. Four of them are identical 6-D...Architecture singularity of a parallel mechanism with five degrees of freedom (DOF) is analyzed. Such mechanism consists of a movable platform connected to the base by five active limbs. Four of them are identical 6-DOF limbs and the last one has the same DOF as the specified DOF of the movable platform. Based on the kinematics analysis, two categories of architecture singularities for such mechanism are proposed. Then the sufficient condition for each singularity is researched. Results show that the mechanism is singular when it employs each category of the proposed architecture, provided that it satisfies the corresponding sufficient condition. It can be concluded that the proposed two categories of architecture singularities should be avoided with the following dimensional synthesis of such mechanism.展开更多
Given a start pose and a goal pose, a large number of singularity-free poses are created randomly in the 6 dimensional task space, a short line segment is used to create a feasible path between two singularity-free po...Given a start pose and a goal pose, a large number of singularity-free poses are created randomly in the 6 dimensional task space, a short line segment is used to create a feasible path between two singularity-free poses. A well connected roadmap can be obtained and stored in the 6 dimension task space for a specific 6 DOF parallel manipulator in this way and a singularity-free path is queried to connect the start pose and the goal pose. So the singularity-free path planning between any two given poses for this parallel manipulator can be performed very efficiently. This singularity-free path planning method can be used with any type of parallel manipulator only if the matrix used can be given to define singularities.展开更多
Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is p...Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is proposed in this paper, which can attain sub-micron-seale precision over the cubic centimeter motion range. This paper introduces the mechanical system architecture based on the wide-range flexure hinges, analyzes the kinematics via stiffness matrices, presents the control system configuration and control strategy, and finally gives the system performance test results.展开更多
基金Project (No. 50375139) supported by the National Natural Science Foundation of China
文摘The 4TPS-PS parallel platform designed for a stabilization and automatic tracking system is a novel lower-mobility parallel mechanism. In the first part of this paper, the structure of the platform is described and the kinematics model is built. The workspace of the platform is defined as the full reachable rotation workspace when the Z coordinate dimension of the upper plate varies continuously. A fast searching method of the full reachable workspace is presented, after which the inverse kinematics of the platform is deduced. The forward and inverse solutions of the speed and force of the platform are deduced. According to the characteristic of the 4TPS-PS platform’s structure, a fast searching algorithm of the maximum generalized speed and maximum generalized force output by the upper plate is put forward based on the forward and inverse solutions of the platform’s speed and force. The 4TPS-PS platform prototype built by the State Key Laboratory of Fluid Power Transmission and Control of China is taken as the research subject. The full reachable rotation workspace of the prototype is computed out and analyzed. The curves of maximum generalized speed and maximum generalized force of the prototype are computed out and plotted. Finally, the com- puting and analyzing results of the operating characteristics are confirmed through the experiment.
文摘Architecture singularity of a parallel mechanism with five degrees of freedom (DOF) is analyzed. Such mechanism consists of a movable platform connected to the base by five active limbs. Four of them are identical 6-DOF limbs and the last one has the same DOF as the specified DOF of the movable platform. Based on the kinematics analysis, two categories of architecture singularities for such mechanism are proposed. Then the sufficient condition for each singularity is researched. Results show that the mechanism is singular when it employs each category of the proposed architecture, provided that it satisfies the corresponding sufficient condition. It can be concluded that the proposed two categories of architecture singularities should be avoided with the following dimensional synthesis of such mechanism.
文摘Given a start pose and a goal pose, a large number of singularity-free poses are created randomly in the 6 dimensional task space, a short line segment is used to create a feasible path between two singularity-free poses. A well connected roadmap can be obtained and stored in the 6 dimension task space for a specific 6 DOF parallel manipulator in this way and a singularity-free path is queried to connect the start pose and the goal pose. So the singularity-free path planning between any two given poses for this parallel manipulator can be performed very efficiently. This singularity-free path planning method can be used with any type of parallel manipulator only if the matrix used can be given to define singularities.
文摘Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is proposed in this paper, which can attain sub-micron-seale precision over the cubic centimeter motion range. This paper introduces the mechanical system architecture based on the wide-range flexure hinges, analyzes the kinematics via stiffness matrices, presents the control system configuration and control strategy, and finally gives the system performance test results.