The configuration space is a fundamental concept that is widely used in algorithmic robotics. Many applications in robotics, computer-aided design, and related areas can be reduced to computational problems in terms o...The configuration space is a fundamental concept that is widely used in algorithmic robotics. Many applications in robotics, computer-aided design, and related areas can be reduced to computational problems in terms of configuration spaces. In this paper, we survey some of our recent work on solving two important challenges related to configuration spaces: ~ how to efficiently compute an approximate representation of high-dimensional configuration spaces; and how to efficiently perform geometric proximity and motion planning queries (n high-dimensional configuration spaces. We present new configuration space construction algorithms based on machine learning and geometric approximation techniques. These algorithms perform collision queries on many configuration samples. The collision query results are used to compute an approximate representation for the configuration space, which quickly converges to the exact configuration space. We also present parallel GPU-based algorithms to accelerate the performance of optimization and search computations in configuration spaces. In particular, we design efficient GPU-based parallel k-nearest neighbor and parallel collision detection algorithms and use these algorithms to accelerate motion planning.展开更多
To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the sch...To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the scheme, two algorithms are proposed for the construction of multiple regeneration trees, namely the edge-disjoint algorithm and edge-sharing algorithm. The edge-disjoint algorithm constructs multiple independent trees, and is simple and appropriate for environments where newcomers and their providers are distributed over a large area and have few intersections. The edge-sharing algorithm constructs multiple trees that compete to utilize the bandwidth, and make a better utilization of the bandwidth, although it needs to measure the available band-width and deal with the bandwidth changes; it is therefore difficult to implement in practical systems. The parallel regeneration for multiple data losses of TPR primarily includes two optimizations: firstly, transferring the data through the bandwidth optimized-paths in a pipe-line manner; secondly, executing data regeneration over multiple trees in parallel. To evaluate the proposal, we implement an event-based simulator and make a detailed comparison with some popular regeneration methods. The quantitative comparison results show that the use of TPR employing either the edge-disjoint algorithm or edge-sharing algorithm reduces the regeneration time significantly.展开更多
基金partially supported by the Army Research Office,the National Science Foundation,Willow Garagethe Seed Funding Programme for Basic Research at the University of Hong Kong
文摘The configuration space is a fundamental concept that is widely used in algorithmic robotics. Many applications in robotics, computer-aided design, and related areas can be reduced to computational problems in terms of configuration spaces. In this paper, we survey some of our recent work on solving two important challenges related to configuration spaces: ~ how to efficiently compute an approximate representation of high-dimensional configuration spaces; and how to efficiently perform geometric proximity and motion planning queries (n high-dimensional configuration spaces. We present new configuration space construction algorithms based on machine learning and geometric approximation techniques. These algorithms perform collision queries on many configuration samples. The collision query results are used to compute an approximate representation for the configuration space, which quickly converges to the exact configuration space. We also present parallel GPU-based algorithms to accelerate the performance of optimization and search computations in configuration spaces. In particular, we design efficient GPU-based parallel k-nearest neighbor and parallel collision detection algorithms and use these algorithms to accelerate motion planning.
基金supported by the National Grand Fundamental Research of China (973 Program) under Grant No. 2011CB302601the National High Technology Research and Development of China (863 Program) under GrantNo. 2013AA01A213+2 种基金the National Natural Science Foundation of China under Grant No. 60873215the Natural Science Foundation for Distinguished Young Scholars of Hunan Province under Grant No. S2010J5050Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20124307110015
文摘To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the scheme, two algorithms are proposed for the construction of multiple regeneration trees, namely the edge-disjoint algorithm and edge-sharing algorithm. The edge-disjoint algorithm constructs multiple independent trees, and is simple and appropriate for environments where newcomers and their providers are distributed over a large area and have few intersections. The edge-sharing algorithm constructs multiple trees that compete to utilize the bandwidth, and make a better utilization of the bandwidth, although it needs to measure the available band-width and deal with the bandwidth changes; it is therefore difficult to implement in practical systems. The parallel regeneration for multiple data losses of TPR primarily includes two optimizations: firstly, transferring the data through the bandwidth optimized-paths in a pipe-line manner; secondly, executing data regeneration over multiple trees in parallel. To evaluate the proposal, we implement an event-based simulator and make a detailed comparison with some popular regeneration methods. The quantitative comparison results show that the use of TPR employing either the edge-disjoint algorithm or edge-sharing algorithm reduces the regeneration time significantly.