期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于季节分类和RBF自适应权重的并行组合电价预测 被引量:3
1
作者 林琳 刘譞 康慧玲 《电子测量技术》 2020年第12期101-105,共5页
电价预测在世界能源市场建设中具有重要意义,基于季节性分类,提出了一种由自回归移动平均模型(ARIMA)、多层前馈神经网络(BP神经网络)和支持向量回归模型(SVR)组成的并行组合电价预测方法。为了充分利用不同方法的优势,将ARIMA、BP、SV... 电价预测在世界能源市场建设中具有重要意义,基于季节性分类,提出了一种由自回归移动平均模型(ARIMA)、多层前馈神经网络(BP神经网络)和支持向量回归模型(SVR)组成的并行组合电价预测方法。为了充分利用不同方法的优势,将ARIMA、BP、SVR分别应用于日前电价预测中,通过径向基神经网络(RBF)对4个不同季节的3个预测值进行非线性拟合,得到最终的预测结果。所提方法的创新点在于对于每个季节都有特定的预测模型,不同预测方法之间非线性权重值随时间变化而变化,与传统的回归组合预测方法和季节非分类情况相比,其仿真结果表明所提方法具有更好的适应性和更高的预测精度。 展开更多
关键词 日前电价预测 季节分类 自适应权重 并行组合法 RBF拟合
下载PDF
T-QoS-aware based parallel ant colony algorithm for services composition 被引量:2
2
作者 Lin Zhang Kaili Rao Ruchuan Wang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第5期1100-1106,共7页
In order to make cloud users get credible, high-quality composition of services, the trust quality of service aware(TQoS-aware) based parallel ant colony algorithm is proposed. Our approach takes the service credibili... In order to make cloud users get credible, high-quality composition of services, the trust quality of service aware(TQoS-aware) based parallel ant colony algorithm is proposed. Our approach takes the service credibility as the weight of the quality of service, then calculates the trust service quality T-QoS for each service, making the service composition situated in a credible environment. Through the establishment on a per-service T-QoS initialization pheromone matrix, we can reduce the colony's initial search time. By modifying the pheromone updating rules and introducing two ant colonies to search from different angles in parallel,we can avoid falling into the local optimal solution, and quickly find the optimal combination of global solutions. Experiments show that our approach can combine high-quality services and the improvement of the operational success rate. Also, the convergence rate and the accuracy of optimal combination are improved. 展开更多
关键词 services composition trust service quality ant colonyalgorithm PARALLEL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部