日冕物质抛射(Coronal Mass Ejection,CME)参数识别模型是太阳风预报过程的重要组成部分.在空间环境预报业务中,为提高太阳风预报的准确率,需要提高CME参数识别的精度.模型以计算任务串行的方式运行,运算效率低导致模型运算时间长,不能...日冕物质抛射(Coronal Mass Ejection,CME)参数识别模型是太阳风预报过程的重要组成部分.在空间环境预报业务中,为提高太阳风预报的准确率,需要提高CME参数识别的精度.模型以计算任务串行的方式运行,运算效率低导致模型运算时间长,不能满足这种需求.CME参数识别模型的物理运算过程相互不独立,其在单节点上的运行方式不能满足并行化要求.基于MapReduce的并行计算框架,改进了CME参数识别模型的计算流程,提出CDMR(CME detection under MapReduce)方法,实现了CME参数识别模型的并行计算,并对比分析CME参数识别模型在串行计算和MapReduce并行计算下的运行时间,提高了模型的识别精度和计算效率.展开更多
文摘日冕物质抛射(Coronal Mass Ejection,CME)参数识别模型是太阳风预报过程的重要组成部分.在空间环境预报业务中,为提高太阳风预报的准确率,需要提高CME参数识别的精度.模型以计算任务串行的方式运行,运算效率低导致模型运算时间长,不能满足这种需求.CME参数识别模型的物理运算过程相互不独立,其在单节点上的运行方式不能满足并行化要求.基于MapReduce的并行计算框架,改进了CME参数识别模型的计算流程,提出CDMR(CME detection under MapReduce)方法,实现了CME参数识别模型的并行计算,并对比分析CME参数识别模型在串行计算和MapReduce并行计算下的运行时间,提高了模型的识别精度和计算效率.