期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Spark的并行频繁项集挖掘算法 被引量:2
1
作者 毛伊敏 吴斌 +1 位作者 许春冬 张茂省 《计算机集成制造系统》 EI CSCD 北大核心 2023年第4期1267-1283,共17页
针对大数据环境下基于Spark的频繁模式增长(FP-Growth)算法存在创建条件频繁模式树(FP-tree)时空效率低,节点间通信开销大,以及冗余搜索等问题,提出了基于Spark的并行频繁项集挖掘算法(PAFMFI-Spark)。首先,该算法提出非负矩阵分解策略(... 针对大数据环境下基于Spark的频繁模式增长(FP-Growth)算法存在创建条件频繁模式树(FP-tree)时空效率低,节点间通信开销大,以及冗余搜索等问题,提出了基于Spark的并行频繁项集挖掘算法(PAFMFI-Spark)。首先,该算法提出非负矩阵分解策略(SNMF),通过提供支持度计数查询和分解储存支持度计数的矩阵,解决了创建条件FP-tree的时空效率低的问题;其次,提出基于遗传算法的分组策略(GS-GA),均衡分配频繁1项集至各节点,解决了节点间的通信开销大的问题;最后,提出高效缩减树结构策略(ERTSS),缩减FP-tree树结构,解决了冗余搜索的问题。实验结果验证了PAFMFI-Spark算法的可行性以及相较于其他挖掘算法的性能优势,所提算法能有效适应各种数据的频繁项集挖掘。 展开更多
关键词 大数据 Spark框架 并行频繁项集挖掘 频繁模式增长算法 非负矩阵分解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部