期刊文献+
共找到9,175篇文章
< 1 2 250 >
每页显示 20 50 100
基于约束信息的并行k-means算法 被引量:8
1
作者 於跃成 王建东 +1 位作者 郑关胜 陈斌 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期505-508,共4页
为获得分布式数据集上用户所期望的聚类结果,提出了基于约束信息的并行k-means聚类算法.在分析并行k-means能够有效实现对水平分布式数据集进行聚类的基础上,修改并行k-means算法的目标函数,设计约束并行k-means算法,将站点用户的约束... 为获得分布式数据集上用户所期望的聚类结果,提出了基于约束信息的并行k-means聚类算法.在分析并行k-means能够有效实现对水平分布式数据集进行聚类的基础上,修改并行k-means算法的目标函数,设计约束并行k-means算法,将站点用户的约束信息以chunklet的形式引入到分布式聚类过程,从而引导算法执行有偏搜索.约束并行k-means算法在理论上保证无约束样本簇内距离最小的同时能够确保chunklet约束中的样本与对应的簇中心之间的平均距离最小.实验结果表明,约束并行k-means算法能够有效改善并行k-means的聚类精度,同时在分布式环境下能够得到与已有约束聚类算法在集中式数据集上相等价的聚类结果. 展开更多
关键词 k-means 并行k-means 约束聚类 约束并行k-means
下载PDF
数据划分优化的并行k-means算法 被引量:7
2
作者 尹建君 王乐 《计算机工程与应用》 CSCD 北大核心 2010年第15期127-131,共5页
针对大规模文本聚类中对聚类算法执行效率的要求,提出了一个内容相关的纵向数据划分策略FTDV,并基于该策略提出了数据划分优化的并行DVPk-means算法,提高了常规并行k-means算法的并行化程度,达到了优化算法执行效率的目的。在实验中,与... 针对大规模文本聚类中对聚类算法执行效率的要求,提出了一个内容相关的纵向数据划分策略FTDV,并基于该策略提出了数据划分优化的并行DVPk-means算法,提高了常规并行k-means算法的并行化程度,达到了优化算法执行效率的目的。在实验中,与常规并行k-means算法和基于关键方向分解的PDDPk-means算法进行比较,DVPk-means具有更好的并行性和对数据规模的适应性,且可以生成更高质量的聚簇。 展开更多
关键词 数据划分 并行聚类算法 频繁词集 k-means算法
下载PDF
基于MapReduce和MSSA的并行K-means算法 被引量:4
3
作者 刘卫明 崔瑜 +1 位作者 毛伊敏 刘蔚 《计算机应用研究》 CSCD 北大核心 2022年第11期3244-3251,3257,共9页
针对大数据环境下并行K-means算法存在的面对高维数据聚类效果差、数据分区不均匀、初始质心敏感等问题,提出了一种基于MapReduce和MSSA的并行K-means算法MR-MSKCA。首先,提出基于肯德尔相关系数和深度稀疏自动编码器的降维策略(dimensi... 针对大数据环境下并行K-means算法存在的面对高维数据聚类效果差、数据分区不均匀、初始质心敏感等问题,提出了一种基于MapReduce和MSSA的并行K-means算法MR-MSKCA。首先,提出基于肯德尔相关系数和深度稀疏自动编码器的降维策略(dimensionality reduction strategy based on Kendall correlation coefficient and DSAE,DRKCAE)对高维数据进行特征加权和特征提取,解决了高维数据不相关特征和结构稀疏导致的聚类效果差的问题;其次,提出基于两段映射的广义超平面分区策略(uniform partition strategy based on two-stage mapping,UPS)对数据集进行划分,获取均匀的数据分区;最后提出非均匀变异麻雀搜索算法(non-uniform mutation sparrow search algorithm,MSSA)用于获取并行K-means的聚类质心,解决了算法初始质心敏感的问题。在UCI数据集上进行的实验显示,MR-MSKCA较MR-KNMF、MR-PGDLSH、MR-GAPKCA的运行时间分别降低了45.1%、49.1%、59.8%,聚类效果分别提升了19.2%、22.8%、24%,表明MR-MSKCA对大数据进行聚类时有良好性能,适用于不同场景的大数据聚类分析。 展开更多
关键词 MAPREDUCE框架 DRKCAE策略 UPS策略 并行聚类 MSSA算法
下载PDF
机群环境下的并行K-means算法 被引量:3
4
作者 毛嘉莉 万敏 陈华月 《宜宾学院学报》 2007年第12期91-93,共3页
针对串行K-means算法已难以适应海量数据的聚类分析,基于机群环境下提出了一种并行K-means算法,采用数据并行策略,引入自适应的数据划分思想,动态地实现了各节点间的负载平衡,从理论分析以及实验结果两个方面验证了该算法的高效率。
关键词 并行K—means算法 机群 PVM 动态负载平衡
下载PDF
基于MPI的并行K-Means算法研究
5
作者 寸江涛 高提雷 《保山学院学报》 2016年第5期77-80,共4页
聚类分析中处理数据量的急剧增加,面对大规模数据,传统K-Means聚类算法面临着巨大挑战。K-means聚类算法在面对海量数据时,时间和空间的复杂性已成为K—means聚类算法的瓶颈;在传统的K均值算法的基础上,详细介绍了基于大规模集群环境下... 聚类分析中处理数据量的急剧增加,面对大规模数据,传统K-Means聚类算法面临着巨大挑战。K-means聚类算法在面对海量数据时,时间和空间的复杂性已成为K—means聚类算法的瓶颈;在传统的K均值算法的基础上,详细介绍了基于大规模集群环境下的并行K-means聚类算法,给出了计算速度和效率的方法,并通过实验证明了该算法的正确性以及对传统算法在速度的上优势;研究结果可以为以后设计更好的大规模数据快速并行聚类划分算法提供研究依据。 展开更多
关键词 k-means聚类算法 并行计算 MPI 加速比
下载PDF
基于云计算的并行k-means算法研究
6
作者 林长方 黄仲开 曾少俊 《齐齐哈尔大学学报(自然科学版)》 2014年第5期5-9,共5页
针对传统k-means聚类算法面对海量数据存在时间复杂度急剧增加的问题,结合云计算的优势,提出基于MapReduce编程框架来实现k-means聚类算法的并行化处理。Map函数完成每个样本记录到聚类中心的距离计算并标记其所属聚类类别,Reduce函数... 针对传统k-means聚类算法面对海量数据存在时间复杂度急剧增加的问题,结合云计算的优势,提出基于MapReduce编程框架来实现k-means聚类算法的并行化处理。Map函数完成每个样本记录到聚类中心的距离计算并标记其所属聚类类别,Reduce函数汇总中间结果并计算出新的聚类中心,供下一轮迭代使用。通过实验表明:基于MapReduce的并行化k-means聚类算法具有较好的加速比和良好的扩展性。 展开更多
关键词 云计算 数据挖掘 并行k-means MAPREDUCE
下载PDF
基于改进的并行K-Means算法的电力负荷聚类研究 被引量:16
7
作者 许元斌 李国辉 +2 位作者 郭昆 郭松荣 林炜 《计算机工程与应用》 CSCD 北大核心 2017年第17期260-265,共6页
电力企业通常根据电力负荷数据,采用传统的K-Means算法对客户进行划分,而这种方法最大的缺陷就是必须由用户手动指定聚类簇数。提出了一种将Canopy算法和K-Means算法结合应用于负荷聚类的方法,无需手动指定聚类簇数。收集到的用户历史... 电力企业通常根据电力负荷数据,采用传统的K-Means算法对客户进行划分,而这种方法最大的缺陷就是必须由用户手动指定聚类簇数。提出了一种将Canopy算法和K-Means算法结合应用于负荷聚类的方法,无需手动指定聚类簇数。收集到的用户历史用电数据,使用并行计算框架Map Reduce对原始数据进行预处理。应用Canopy和K-Means算法建立自动负荷聚类模型。在真实用电数据上进行实证分析,通过使用Silhouette指标对结果进行评估,证明提出的方法更加稳定和具有广泛的适用性。 展开更多
关键词 负荷聚类 并行计算 CANOPY k-means
下载PDF
基于FPGA的细粒度并行K-means算法加速器的设计与实现 被引量:2
8
作者 倪时策 窦勇 +1 位作者 雷元武 赵建勋 《计算机工程与科学》 CSCD 北大核心 2009年第A01期64-67,共4页
本文在深入分析K-means算法计算特征的基础上,基于FPGA平台提出并实现了一种细粒度的并行浮点K-means算法。设计采用了阵列多PE并行处理的任务划分策略,实现了处理单元间的负载平衡,采用数据驱动的流水线隐藏片外存储访问,设计了一种基... 本文在深入分析K-means算法计算特征的基础上,基于FPGA平台提出并实现了一种细粒度的并行浮点K-means算法。设计采用了阵列多PE并行处理的任务划分策略,实现了处理单元间的负载平衡,采用数据驱动的流水线隐藏片外存储访问,设计了一种基于脉动阵列结构的主从多PE并行计算阵列,并在单片FPGA(XC5VLX330)上成功集成了4个PE。实验结果表明,我们提出的K-means算法加速器结构具备良好的可扩展性。通过实验测试,我们的实现方案相对于Pentium 4 2.66 GHz单处理器程序达到了15倍的加速比。 展开更多
关键词 k-means算法 FPGA 硬件加速器 浮点实现
下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:1
9
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 k-means聚类 特征空间增强 mixup算法
下载PDF
基于K-means算法的建筑群震害分析模型缩减方法
10
作者 陈夏楠 张令心 +1 位作者 林旭川 王祺 《世界地震工程》 北大核心 2024年第1期72-79,共8页
基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考。为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法。该方法采用K-means聚类... 基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考。为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法。该方法采用K-means聚类算法,首先基于建筑结构属性向量对建筑群进行聚类,将相似的建筑结构聚为一组;然后从每组选取一个代表建筑组成建筑群缩减模型,通过减少需要分析的建筑结构数量来减少建筑群震害模拟的计算量。本文对传统的K-means算法进行改进,通过设定组内建筑结构的差异上限自动调整聚类分组数量;提出将具体地震动作用下结构地震损伤指数作为结构属性向量进行聚类,并通过算例对比分别采用两种缩减模型,即基于损伤指数聚类的缩减模型与基于结构力学模型参数聚类的缩减模型,计算结构损伤状态准确程度。对比结果表明:在聚类分组数量相同的情况下,基于损伤指数的分组明显优于基于模型参数的分组,采用模型缩减方法能够在保证足够计算精度前提下显著减少建筑群震害模拟计算量和计算时间。 展开更多
关键词 城市建筑群 k-means算法 模型缩减 结构模型参数 地震损伤指数
下载PDF
基于改进K-means数据聚类算法的网络入侵检测 被引量:1
11
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进k-means数据聚类算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
基于改进K-means算法的物流配送中心选址研究 被引量:1
12
作者 姚佼 吴秀荣 +3 位作者 李皓 谢贝贝 王诗璇 梁益铭 《物流科技》 2024年第5期10-13,19,共5页
针对传统K-means算法需要主观设定K值及无法处理类别型数据问题,文章运用肘部法及轮廓系数法确定合理K值,对类别型数据采取独热编码(One-Hot Encoding)转换为可以处理的连续型数据,并将其运用到在物流配送中心选址中;并综合考虑多种类... 针对传统K-means算法需要主观设定K值及无法处理类别型数据问题,文章运用肘部法及轮廓系数法确定合理K值,对类别型数据采取独热编码(One-Hot Encoding)转换为可以处理的连续型数据,并将其运用到在物流配送中心选址中;并综合考虑多种类别的影响因素,构建了相应的影响因素指标体系,提出的模型能够识别输入数据的数值型及类别型数据,实现样本的有效聚类。相关的案例分析结果表明,相比传统K-means聚类,文章的改进K-means算法选址结果可使物流总成本降低8.76%,运营成本降低14.85%,固定成本降低8.09%,效果显著。 展开更多
关键词 物流配送中心选址 k-means聚类算法 肘部法 轮廓系数法 独热编码
下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
13
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进k-means聚类算法 遗传算法 混合算法
下载PDF
基于蚁群算法的三支k-means聚类算法
14
作者 朱金 徐天杰 王平心 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期63-69,共7页
在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法... 在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法中随机概率选择策略和信息素的正负反馈机制,动态调整权重的方法,对三支k-means聚类算法进行优化.在UCI数据集上实验证明,该方法对聚类结果的性能指标有所提高. 展开更多
关键词 三支k-means k-means聚类算法 聚类中心 蚁群算法
下载PDF
基于特征分箱和K-Means算法的用户行为分析方法
15
作者 殷丽凤 路建政 《云南民族大学学报(自然科学版)》 CAS 2024年第2期251-257,共7页
针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.... 针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.其中,基于特征分箱法的RFM模型将变量转化到相似的尺度上并将变量离散化,使得用户分类标签更加清晰,也可依据各类标签分类出不同类型的用户.K-Means算法通过轮廓系数评估聚类算法质量以至于选取最优K值.本文实验分析结果可为运营商提供更加可靠直观的数据,使得运营商可以根据不同用户的不同行为进行市场细分,进而进行精准营销和服务设置. 展开更多
关键词 特征分箱 k-means算法 用户行为 RFM模型 网购
下载PDF
启发式k-means聚类算法的改进研究
16
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 聚类算法 k-means 启发式算法 仔细播种 局部异常因子 离群点
下载PDF
基于马氏距离和Canopy改进K-means的交通聚类算法
17
作者 徐文进 马越 杜咏慧 《计算机与数字工程》 2024年第6期1630-1635,1649,共7页
在对交通数据的研究中经常会使用到聚类算法,且不同的聚类算法有不同的特性。K-means作为其中的一种聚类算法,具有较高的准确性和实用性,但其准确性易受主观选取K值和确定初始聚类中心的影响。为了优化聚类中心和K值的选取问题,提出MC-K... 在对交通数据的研究中经常会使用到聚类算法,且不同的聚类算法有不同的特性。K-means作为其中的一种聚类算法,具有较高的准确性和实用性,但其准确性易受主观选取K值和确定初始聚类中心的影响。为了优化聚类中心和K值的选取问题,提出MC-Kmeans算法。在所提方法中,首先通过Canopy算法选取K值,然后依据马氏距离的计算准则来确定初始聚类中心,最后将K值和聚类中心的值作为K-means的参数进行聚类。将MC-Kmeans算法应用到某时间段的纽约出租车交通数据中进行实际的验证。结果表明,与K-means算法比较,所提方法准确度更高,与实际交通情况更加相匹配,更能反映区域内的交通热点情况。 展开更多
关键词 k-means Canopy算法 马氏距离 交通
下载PDF
一种融合乌鸦搜索算法的K-means聚类算法
18
作者 高海宾 《新乡学院学报》 2024年第3期19-25,共7页
传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全... 传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全局搜索能力,自动确定最佳的聚类数目K,从而提高聚类的质量和效率。通过在Seeds数据集进行实验计算卡林斯基-哈拉巴斯(Calinski-Harabasz)指数等评价指标,发现该算法聚类效果明显优于传统的K-means算法。 展开更多
关键词 k-means算法 乌鸦搜索算法 聚类 Calinski-Harabasz指数
下载PDF
基于BBO优化K-means算法的WSN分簇路由算法 被引量:1
19
作者 彭程 谭冲 +1 位作者 刘洪 郑敏 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第3期357-364,共8页
针对无线传感器网络中传感器节点能量有限、网络生存期短的问题,提出一种基于生物地理学算法优化K-means的无线传感器网络分簇路由算法BBOK-GA。成簇阶段,通过生物地理学优化算法改进K-means算法,避免求解时陷入局部最优。根据能量因子... 针对无线传感器网络中传感器节点能量有限、网络生存期短的问题,提出一种基于生物地理学算法优化K-means的无线传感器网络分簇路由算法BBOK-GA。成簇阶段,通过生物地理学优化算法改进K-means算法,避免求解时陷入局部最优。根据能量因子和距离因子设计了新的适应度函数选举最优簇首,完成分簇任务。数据传输阶段,则利用遗传算法为簇首节点搜寻到基站的最佳数据传输路径。仿真结果表明,相较于LEACH、LEACH-C、K-GA等算法,BBOK-GA降低了网络能耗,提高了网络吞吐量,延长了网络生存周期。 展开更多
关键词 无线传感器网络 生物地理学优化算法 遗传算法 k-means算法 分簇路由
下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
20
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 k-means聚类算法 网络异常 数据挖掘 数据分类 离群点检测
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部