研究了t道、s道、u道和由张量相互作用项导致的接触项对矢量介子和重子八重态之间的相互作用势的贡献。在分波分析的框架下,求解了耦合道的李普曼–施温格方程,研究了动力学生成的奇异数S=0,同位旋为I=1/2的重子共振态N(1650)1/2-和N(17...研究了t道、s道、u道和由张量相互作用项导致的接触项对矢量介子和重子八重态之间的相互作用势的贡献。在分波分析的框架下,求解了耦合道的李普曼–施温格方程,研究了动力学生成的奇异数S=0,同位旋为I=1/2的重子共振态N(1650)1/2-和N(1700)3/2-,N(1895)1/2-和N(1875)3/2-,N(2120)3/2-,以及同位旋I=3/2的重子共振态△(1620)1/2-和△(1700)3/2-的质量、衰变宽度、和角动量等性质。另外,计算结果表明,在2 000 Me V附近存在着JP=1/2-的N(2120)3/2-的对偶共振态。展开更多
The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d...The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d-dimensions. As d→∞ , their clone fidelities move toward 1/3, showing a classical limit for the fidelity of quantum cloning. Based on the reduction of the unitary transformation of quantum cloning, the transformation of the 1→M=d+1 optimal economical phase-covariant quantum cloning in d-dimensions is derived, and the clone fidelity is covered by the theoretical value.展开更多
基金National Natural Science Foundation of China(10775012)~~
文摘研究了t道、s道、u道和由张量相互作用项导致的接触项对矢量介子和重子八重态之间的相互作用势的贡献。在分波分析的框架下,求解了耦合道的李普曼–施温格方程,研究了动力学生成的奇异数S=0,同位旋为I=1/2的重子共振态N(1650)1/2-和N(1700)3/2-,N(1895)1/2-和N(1875)3/2-,N(2120)3/2-,以及同位旋I=3/2的重子共振态△(1620)1/2-和△(1700)3/2-的质量、衰变宽度、和角动量等性质。另外,计算结果表明,在2 000 Me V附近存在着JP=1/2-的N(2120)3/2-的对偶共振态。
基金supported by the National Natural Science Foundation of China (Grant No.10704001)the Natural Science Foundation of the Education Department of Anhui Province of China (Grant Nos.KJ2010ZD08 and KJ2010B204)the Doctor Research Start-Up Program of Huainan Normal University
文摘The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d-dimensions. As d→∞ , their clone fidelities move toward 1/3, showing a classical limit for the fidelity of quantum cloning. Based on the reduction of the unitary transformation of quantum cloning, the transformation of the 1→M=d+1 optimal economical phase-covariant quantum cloning in d-dimensions is derived, and the clone fidelity is covered by the theoretical value.