针对航空紧固件分拣过程中现有方法存在效率低、成本高、精度差等问题,提出一种面向边缘智能光学感知的旋转目标检测方法。构建一种基于强化语义和优化空间的特征融合机制,有效提升目标检测模型的性能;设计一种空洞幻影模块,减少特征融...针对航空紧固件分拣过程中现有方法存在效率低、成本高、精度差等问题,提出一种面向边缘智能光学感知的旋转目标检测方法。构建一种基于强化语义和优化空间的特征融合机制,有效提升目标检测模型的性能;设计一种空洞幻影模块,减少特征融合网络的参数量,有利于模型在工业场景下的边缘部署;采用高斯类环形平滑标签方法,在模型检测层预测分支上实现旋转目标检测,显著提升模型检测性能,并更有助于工业机器人自动抓取。在权威公开旋转数据集上,检测准确率达到77.16%。最后,在嵌入式智能设备上进行边缘部署并测试,整体准确率达到99.76%,推理速度超过20 FPS(frames per second),满足工业应用的要求。展开更多
文摘针对航空紧固件分拣过程中现有方法存在效率低、成本高、精度差等问题,提出一种面向边缘智能光学感知的旋转目标检测方法。构建一种基于强化语义和优化空间的特征融合机制,有效提升目标检测模型的性能;设计一种空洞幻影模块,减少特征融合网络的参数量,有利于模型在工业场景下的边缘部署;采用高斯类环形平滑标签方法,在模型检测层预测分支上实现旋转目标检测,显著提升模型检测性能,并更有助于工业机器人自动抓取。在权威公开旋转数据集上,检测准确率达到77.16%。最后,在嵌入式智能设备上进行边缘部署并测试,整体准确率达到99.76%,推理速度超过20 FPS(frames per second),满足工业应用的要求。