Five humic fractions were obtained from a uniformly 15N-labelled soil by extraction with 0.1 mol L-1 Na4P207, 0.1 mol L-1 NaOH, and HF/HCI-0.1 mol L-1 NaOH, consecutively, and analyzed by 13C and 15N CPMAS NMR (cross ...Five humic fractions were obtained from a uniformly 15N-labelled soil by extraction with 0.1 mol L-1 Na4P207, 0.1 mol L-1 NaOH, and HF/HCI-0.1 mol L-1 NaOH, consecutively, and analyzed by 13C and 15N CPMAS NMR (cross polarization and magic angle spinning nuclear magnetic resonance). Compared with those of native soils humic fractions studied as a whole contained more alkyls, methoxyls and O-alkyls, being 27%-36%, 17%-21% and 36%-40%, respectively, but fewer aromatics and carboxyls (being 14%-20% and 13%-90%, respectively). Among those humic fractions, the humic acid (HA) and fulvic acid (FA) extracted by 0.1 mol L-1 Na4P207 contained slightly more carboxyls than corresponding humic fractions extracted by 0.1 mol L-1 NaOH, and the HA extracted by 0.1 mol L-1 NaOH after treatment with HF/HCI contained the least aromatics and carboxyls. The distribution of nitrogen functional groups of soil humic fractions studied was quite similar to each other and also quite similar to that of humic fraction from native soils. More than 75% of total N in each fraction was in amide form, with 9%-13% present as aromatic and/or aliphatic amines and the remainder as hoterocyclic N.展开更多
X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those...X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those obtained by 15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method. 70%~86% of total N in soil humic substances was in the form of amide, and 6%~13% was presented as amines, with the remaining part as heterocyclic N. There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones. For fulvic acid from weathered coal and benzoqu inone- (N H-4 )-2 S O-4 polymer the XPS results deviated significantly from the 15N CPMAS NMR data.展开更多
Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days a...Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days and partitioned into acid-insoluble (MHA) and acid-soluble (MFA) fractions. The nitrogen forms in these polymers were studied by using the 15N cross polarization-magic angle spinning nuclear magnetic resonance (CPMAS NMR) technique in combination with chemical methods. The 15N nuclear magnetic resonance (NMR) data showed that while the yield, especially the MHA/MFA ratio, varied considerably with the concentrations of the reactants, the nitrogen distribution patterns of these polymers were quite similar.From 65% to 70% of nitrogen in them was in the secondary amide and/or indole form with 24%~25% present as aliphatic and/or aromatic ammes and 5% to 11% as pyrrole and/or pyrrole-like nitrogen. More than half (50%~77%) of the N in these polymers were nonhydrolyzable. The role of Maillard reaction in the formation of nonhydrolyzable nitrogen in soil organic matter is discussed.展开更多
基金Project (No. 39790100) supported by the National Natural Science Foundation of China.
文摘Five humic fractions were obtained from a uniformly 15N-labelled soil by extraction with 0.1 mol L-1 Na4P207, 0.1 mol L-1 NaOH, and HF/HCI-0.1 mol L-1 NaOH, consecutively, and analyzed by 13C and 15N CPMAS NMR (cross polarization and magic angle spinning nuclear magnetic resonance). Compared with those of native soils humic fractions studied as a whole contained more alkyls, methoxyls and O-alkyls, being 27%-36%, 17%-21% and 36%-40%, respectively, but fewer aromatics and carboxyls (being 14%-20% and 13%-90%, respectively). Among those humic fractions, the humic acid (HA) and fulvic acid (FA) extracted by 0.1 mol L-1 Na4P207 contained slightly more carboxyls than corresponding humic fractions extracted by 0.1 mol L-1 NaOH, and the HA extracted by 0.1 mol L-1 NaOH after treatment with HF/HCI contained the least aromatics and carboxyls. The distribution of nitrogen functional groups of soil humic fractions studied was quite similar to each other and also quite similar to that of humic fraction from native soils. More than 75% of total N in each fraction was in amide form, with 9%-13% present as aromatic and/or aliphatic amines and the remainder as hoterocyclic N.
基金Project (No. 39790100) supported by the National Natural Science Foundation of China.
文摘X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those obtained by 15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method. 70%~86% of total N in soil humic substances was in the form of amide, and 6%~13% was presented as amines, with the remaining part as heterocyclic N. There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones. For fulvic acid from weathered coal and benzoqu inone- (N H-4 )-2 S O-4 polymer the XPS results deviated significantly from the 15N CPMAS NMR data.
文摘Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days and partitioned into acid-insoluble (MHA) and acid-soluble (MFA) fractions. The nitrogen forms in these polymers were studied by using the 15N cross polarization-magic angle spinning nuclear magnetic resonance (CPMAS NMR) technique in combination with chemical methods. The 15N nuclear magnetic resonance (NMR) data showed that while the yield, especially the MHA/MFA ratio, varied considerably with the concentrations of the reactants, the nitrogen distribution patterns of these polymers were quite similar.From 65% to 70% of nitrogen in them was in the secondary amide and/or indole form with 24%~25% present as aliphatic and/or aromatic ammes and 5% to 11% as pyrrole and/or pyrrole-like nitrogen. More than half (50%~77%) of the N in these polymers were nonhydrolyzable. The role of Maillard reaction in the formation of nonhydrolyzable nitrogen in soil organic matter is discussed.
基金US Depart ment of Energy Grants(DE-FG05-88ER40407,DE-FG02-96ER40983,DE-FG02-95ER40093)Contract(W-7405-ENG48,DE-AC03-76SF00098,DE-AC07-76ID01570)+1 种基金The Work at Tsinghua University was supported by National Natural Science Foundation of China(10575057,10775078)Major State Basic Research Development Program of China(2007CB815005)~~