期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
煤矸的轻量级智能分选网络 被引量:2
1
作者 王天奇 贾晓芬 +3 位作者 杜圣杰 郭永存 黄友锐 赵佰亭 《光电子.激光》 CAS CSCD 北大核心 2023年第1期19-25,共7页
针对现有煤矸分选方法存在模型复杂、实时性差、特征易丢失等问题,构建了一种轻量化煤矸分选网络GC-ResNet18。GC-ResNet18利用幽灵卷积(ghost convolution, GC)线性生成ghost映射的特性,剔除煤和矸石相似性特征的冗余信息。借助Softpoo... 针对现有煤矸分选方法存在模型复杂、实时性差、特征易丢失等问题,构建了一种轻量化煤矸分选网络GC-ResNet18。GC-ResNet18利用幽灵卷积(ghost convolution, GC)线性生成ghost映射的特性,剔除煤和矸石相似性特征的冗余信息。借助Softpool的下采样激活映射,保留、凸显煤和矸石的特征信息并去除冗余参数,防止过拟合现象。引入GC自注意力机制,融合SENet的轻量化和NLNet长距离信息全局捕获的优势,使网络记忆、放大煤矸图像间的细微差异特征,提升煤矸图像的识别准确率。实验结果表明,GC降低了46.6%的参数量,GC自注意力机制在CIFAR10、CIFAR100上分别提升1.44%、2.32%的准确率,而Softpool池化在上述两个数据集中分别提升了0.22%、0.17%。通过对比实验,全面改进后的GC-ResNet18网络在训练效率和分类精度上优于VGG19-S-GDCNN、SBP-VGG-16等模型,在CIFAR10和CIFAR100数据集中的分类精度与同规模的网络相比均达到最优的94.07%和74.95%,并最终在自建煤矸数据集上达到了97.2%的分类准确率。 展开更多
关键词 煤矸分选 神经网络 幽灵卷积(gc) 高效池化层 自注意机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部