期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
广义隐马尔科夫模型在轴承温升预测中的应用 被引量:3
1
作者 王小岑 胡友民 +2 位作者 吴波 谢锋云 金超 《机械与电子》 2013年第6期54-57,共4页
将广义区间概率与隐马尔科夫模型结合,建立了广义隐马尔科夫模型,使之具有更好的鲁棒性和处理2类不确定性问题的能力,并成功用于滚珠丝杠进给系统的轴承温升预测。结果表明,广义隐马尔科夫模型能够根据历史信息对轴承的温升进行预测。
关键词 广义隐马尔科夫模型 广义区间概率 轴承温升预测
下载PDF
A generalized Markov chain model based on generalized interval probability 被引量:6
2
作者 XIE FengYun WU Bo +1 位作者 HU YouMin WANG Yan 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第9期2132-2136,共5页
In the traditional Markov chain model (MCM), aleatory uncertainty because of inherent randomness and epistemic uncertainty due to the lack of knowledge are not differentiated. Generalized interval probability provides... In the traditional Markov chain model (MCM), aleatory uncertainty because of inherent randomness and epistemic uncertainty due to the lack of knowledge are not differentiated. Generalized interval probability provides a concise representation for the two kinds of uncertainties simultaneously. In this paper, a generalized Markov chain model (GMCM), based on the generalized interval probability theory, is proposed to improve the reliability of prediction. In the GMCM, aleatory uncertainty is represented as probability; interval is used to capture epistemic uncertainty. A case study for predicting the average dynamic compliance in machining processes is provided to demonstrate the effectiveness of proposed GMCM. The results show that the proposed GMCM has a better prediction performance than that of MCM. 展开更多
关键词 UNCERTAINTY generalized interval probability generalized Markov chain model (GMCM) PREDICTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部