In the traditional Markov chain model (MCM), aleatory uncertainty because of inherent randomness and epistemic uncertainty due to the lack of knowledge are not differentiated. Generalized interval probability provides...In the traditional Markov chain model (MCM), aleatory uncertainty because of inherent randomness and epistemic uncertainty due to the lack of knowledge are not differentiated. Generalized interval probability provides a concise representation for the two kinds of uncertainties simultaneously. In this paper, a generalized Markov chain model (GMCM), based on the generalized interval probability theory, is proposed to improve the reliability of prediction. In the GMCM, aleatory uncertainty is represented as probability; interval is used to capture epistemic uncertainty. A case study for predicting the average dynamic compliance in machining processes is provided to demonstrate the effectiveness of proposed GMCM. The results show that the proposed GMCM has a better prediction performance than that of MCM.展开更多
基金supported by the National Key Basic Research Program of China (973 Program) (Grant No. 2011CB706803)the National Natural Science Foundation of China (Grant Nos. 51175208, 51075161)
文摘In the traditional Markov chain model (MCM), aleatory uncertainty because of inherent randomness and epistemic uncertainty due to the lack of knowledge are not differentiated. Generalized interval probability provides a concise representation for the two kinds of uncertainties simultaneously. In this paper, a generalized Markov chain model (GMCM), based on the generalized interval probability theory, is proposed to improve the reliability of prediction. In the GMCM, aleatory uncertainty is represented as probability; interval is used to capture epistemic uncertainty. A case study for predicting the average dynamic compliance in machining processes is provided to demonstrate the effectiveness of proposed GMCM. The results show that the proposed GMCM has a better prediction performance than that of MCM.