期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
具有三个位势的广义耦合无色散可积方程的多孤子解(英文)
1
作者 扎其劳 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期253-257,共5页
利用具有三个位势的2×2矩阵谱问题的规范变换,给一个广义耦合无色散方程构造了一种新的N重达布变换.作为达布变换的应用,获得了该广义耦合无色散方程的N-孤子解.
关键词 达布变换 孤子解 广义耦合无色散可积方程
下载PDF
变系数(2+1)维耦合可积广义Kaup型模型的N-孤子解析解及其应用
2
作者 孙福伟 何仁国 《北方工业大学学报》 2013年第1期49-55,共7页
借助计算机符号运算和齐次平衡法,研究了流体力学和等离子体物理中因环境影响导致的高阶非线性耦合因素产生的变系数(2+1)维耦合可积广义Kaup型模型.通过齐次平衡法,得到了该模型变系数之间的约束条件和Bcklund变换,求出了该模型的单... 借助计算机符号运算和齐次平衡法,研究了流体力学和等离子体物理中因环境影响导致的高阶非线性耦合因素产生的变系数(2+1)维耦合可积广义Kaup型模型.通过齐次平衡法,得到了该模型变系数之间的约束条件和Bcklund变换,求出了该模型的单孤子解、双孤子解、三孤子解以及N-孤子解的解析表达式.最后给出了相关的单孤子、双孤子、三孤子变化图形及其相关性质的分析,解释了不同的外界环境因素会影响孤立波间的相互作用,由此更好地理解在流体力学和等离子体物理中一些孤子传播的物理现象. 展开更多
关键词 变系数(2+1)维耦合可积广义Kaup型模型 齐次平衡法 Ba..cklund变换 多孤子解 N-孤子解析解表达形式
下载PDF
广义Riemann可积与Lebesgue可积关系注记
3
作者 袁德美 《渝州大学学报(自然科学版)》 2002年第2期1-3,共3页
研究了有限区间上无界函数及无限区间上函数的广义Riemann可积性、广义Riemann绝对可积性与Lebesgue可积性之间的关系 。
关键词 广义Riemann可积 广义Riemann绝对可积 LEBESGUE可积 FATOU引理 LEBESGUE控制收敛定理
下载PDF
超广义Burgers方程族的非线性可积耦合及其Bargmann对称约束
4
作者 方芳 胡贝贝 张玲 《数学物理学报(A辑)》 CSCD 北大核心 2020年第3期694-704,共11页
基于李超代数,构造了超广义Burgers方程族的非线性可积耦合,并且利用超级恒等式得到了它的超Hamilton结构.此外,该文计算出超广义Burgers方程族的非线性可积耦合的Bargmann对称约束.
关键词 李超代数 广义Burgers方程族的非线性可积耦合 超Hamilton结构 可积耦合 Bargmann对称约束
下载PDF
第一类阿贝尔方程可积性的初步研究 被引量:3
5
作者 刘靖 管克英 《北京交通大学学报》 EI CAS CSCD 北大核心 2006年第3期104-107,共4页
根据一般二阶多项式自治系统可积的充要条件,对第一类阿贝尔方程给出了目前已知的几类可积方程的积分因子所具有的特征,并给出了当积分因子限制在其中一类特征时方程系数间的关系,然后进一步证明这类方程可经线性变换化成Bernoulli方程.
关键词 阿贝尔方程Liouville可积 广义可积 分因子 线性变换
下载PDF
Riemann积分与Lebesgue积分的联系 被引量:1
6
作者 汪文珑 韩金林 《绍兴文理学院学报(自然科学版)》 2005年第9期15-17,29,共4页
研究Riemann积分与Lebesgue积分的关系.证明了广义Riemann积分与Lebesgue积分、柯西主值积分与kbesgue积分关系的若干结论.
关键词 RIEMANN可积 广义Riemann可积 柯西主值 LEBESGUE可积
下载PDF
关于R—积分与L—积分联系的一点注记
7
作者 曾繁富 《吉首大学学报(自然科学版)》 CAS 1991年第2期57-62,共6页
本文在无穷区间上讨论了Riemann积分与Lebesgue积分的联系,给出了函数f(x)在无穷区间上广义Riemann可积时Lebesgue可积的两个充分必要条件,并给出了f(x)在无穷区间上Lebesgue可积时Riemann可积的条件.
关键词 广义R—可积 L—可积 广义R—绝对可积
下载PDF
Riemann引理的推广及其应用
8
作者 斯琴高娃 《内蒙古师范大学学报(教育科学版)》 2003年第6期111-113,共3页
Riemann引理是数学分析中的一个重要命题。本文讨论了Riemann引理的两个推广形式 。
关键词 数学分析 RIEMANN引理 推广形式 常义可积 广义绝对可积 周期函数
下载PDF
Riemann引理的推广及其应用
9
作者 董立华 《榆林学院学报》 2011年第2期13-15,共3页
Riemann定理是分析学的重要定理之一,将其推广后应用范围十分广泛,并在Fourier分析中也起着重要的作用。
关键词 Riemann定理 广义绝对可积 FOURIER分析
下载PDF
Similarity Solutions for Generalized Variable Coefficients Zakharov-Kuznetsov Equation under Some Integrability Conditions 被引量:1
10
作者 M.H.M.Moussa Rehab M.El-Shiekh 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第10期603-608,共6页
In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov- Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal sys... In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov- Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal system seven basic fields are determined, and for every vector field in the optimal system the admissible forms of the coefficients are found and this also leads us to transform the given equation into partial differential equations in two variables. After using some referenced transformations the mentioned partial differential equations eventually reduce to ordinary differential equations. The search for solutions to those equations has yielded many exact solutions in most cases. 展开更多
关键词 symmetry method the generalized variable coefficients Zakharov-Kuznetsov equation exact solutions
下载PDF
Hamiltonian Forms for a Hierarchy of Discrete Integrable Coupling Systems
11
作者 XU Xi-Xiang YANG Hong-Xiang LU Rong-Wu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第12期1269-1275,共7页
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi... A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems. 展开更多
关键词 integrable lattice equation semi-direct sum of Lie algebra integrable coupling system discrete variational identity Hamiltonian form Liouville integrability
下载PDF
A Type of New Loop Algebra and a Generalized Tu Formula
12
作者 GUO Fu-Kui ZHANG Yu-Feng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第1期39-46,共8页
A new Lie algebra, which is far different form the known An-1, is established, for which the corresponding loop algebra is given. From this, two isospectral problems are revealed, whose compatibility condition reads a... A new Lie algebra, which is far different form the known An-1, is established, for which the corresponding loop algebra is given. From this, two isospectral problems are revealed, whose compatibility condition reads a kind of zero curvature equation, which permits Lax integrable hierarchies of soliton equations. To aim at generating Hamiltonian structures of such soliton-equation hierarchies, a beautiful Killing-Cartan form, a generalized trace functional of matrices, is given, for which a generalized Tu formula (GTF) is obtained, while the trace identity proposed by Tu Guizhang [J. Math. Phys. 30 (1989) 330] is a special case of the GTF. The computing formula on the constant γ to be determined appearing in the GTF is worked out, which ensures the exact and simple computation on it. Finally, we take two examples to reveal the applications of the theory presented in the article. In details, the first example reveals a new Liouville-integrable hierarchy of soliton equations along with two potential functions and Hamiltonian structure. To obtain the second integrable hierarchy of soliton equations, a higher-dimensional loop algebra is first constructed. Thus, the second example shows another new Liouville integrable hierarchy with 5-potential component functions and bi- Hamiltonian structure. The approach presented in the paper may be extensively used to generate other new integrable soliton-equation hierarchies with multi-Hamiltonian structures. 展开更多
关键词 Lie algebra loop algebra Tu formula Hamiltonian structure
下载PDF
Integrable Couplings of Generalized Glachette-Johnson (GJ) Hierarchy
13
作者 赵晶 张玉峰 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第1期37-43,共7页
A new loop algebra G is established to obtain integrable coupling of GJ hierarchy. In particular, iiitegrable coupling of the well-known AKNS hierarchy is presented. This method can be used generally.
关键词 integrable coupling loop algebra GJ hierarchy AKNS hierarchy.
下载PDF
Multi-solitons for a generalized Davey-Stewartson system
14
作者 WANG Zhong CUI ShangBin 《Science China Mathematics》 SCIE CSCD 2017年第4期651-670,共20页
This paper studies multi-solitons of non-integrable generalized Davey-Stewartson system in the elliptic-elliptic case. By extending the method for constructing multi-solitons of non-integrable nonlinear SchrSdinger eq... This paper studies multi-solitons of non-integrable generalized Davey-Stewartson system in the elliptic-elliptic case. By extending the method for constructing multi-solitons of non-integrable nonlinear SchrSdinger equations and systems developed by Martel et al. to the present non-integrable generalized Davey- Stewartson system and overcoming some new difficulties caused by the nonlocal operator B, we prove the existence of multi-solitons for this system. Furthermore, we also give a generalization of this result to a more general class of equations with nonlocal nonlinearities. 展开更多
关键词 Davey-Stewartson system multi-solitons EXISTENCE NONLOCAL
原文传递
Interactions of Soliton Waves for a Generalized Discrete KdV Equation
15
作者 Tong Zhou Zuo-Nong Zhu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第7期6-12,共7页
It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons i... It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiserete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis. 展开更多
关键词 generalized discrete KdV equation soliton solution soliton interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部