期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
广义回归神经网络残余Kriging方法预测地表高程 被引量:2
1
作者 袁贺 罗问 刘付程 《安徽大学学报(自然科学版)》 CAS 北大核心 2010年第5期21-26,共6页
以广东省番禹区沙洲和石楼镇岛地区的1 657个高程点为样本点,把其分为A、B、C组各200个高程点,A+B组400个高程点,A+B+C组600个高程点作为训练数据集,在Matlab 7.1和ArcGIS 9.2平台上分别应用广义回归神经网络(GRNN)、普通克里格(O-Krigi... 以广东省番禹区沙洲和石楼镇岛地区的1 657个高程点为样本点,把其分为A、B、C组各200个高程点,A+B组400个高程点,A+B+C组600个高程点作为训练数据集,在Matlab 7.1和ArcGIS 9.2平台上分别应用广义回归神经网络(GRNN)、普通克里格(O-Kriging)、广义回归神经网络残余Kriging方法(GRNNRK)进行高程估值和成图,最后计算出三种方法的均方根误差.结果表明,如果插值样本数据量不变,样本的空间分布格局对GRNNRK插值精度的影响不大,且其插值精度要优于GRNN和O-Kriging方法的插值精度.随着插值样本数据量的增加,三种方法的插值精度都有显著提高,但GRNNRK方法的插值精度仍优于另两种方法.这表明GRNNRK方法在地形高程预测中的应用是可行的. 展开更多
关键词 广义回归神经网络 克里格 残余 地表高程预测
下载PDF
沉积物粒度组分空间预测的神经网络残余kriging方法 被引量:1
2
作者 刘付程 杨毅 +3 位作者 张林 魏陶荣馨 王宇涵 夏量 《海洋通报》 CAS CSCD 北大核心 2020年第3期363-371,共9页
针对近海表层沉积物粒度组分空间变异的尺度差异性,提出了基于广义回归神经网络残余kriging的沉积物粒度组分空间预测方法,并以海州湾沉积物粒度数据为基础,分析了其在沉积物粒度组分空间预测和底质类型制图中的应用效果。结果表明,广... 针对近海表层沉积物粒度组分空间变异的尺度差异性,提出了基于广义回归神经网络残余kriging的沉积物粒度组分空间预测方法,并以海州湾沉积物粒度数据为基础,分析了其在沉积物粒度组分空间预测和底质类型制图中的应用效果。结果表明,广义回归神经网络残余kriging方法能够获得比普通kriging方法更高的沉积物粒度组分空间预测精度,并且其底质类型的总体空间预测精度达到85%以上,相应的Kappa系数也在0.8以上,显示底质制图的预测类型与样本的实测类型具有较高的一致性。新方法对于开展定量化的沉积物粒度组分空间预测和底质类型制图具有参考价值。 展开更多
关键词 广义回归神经网络残余kriging 沉积物粒度组分 空间预测 底质制图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部