The authors give an algebraic method to add uniton numbers for harmonic maps from a simply connected domain ? ? R2∪{∞} into the unitary group U(N) with ?nite uniton number. So, it is proved that any n-uniton can be ...The authors give an algebraic method to add uniton numbers for harmonic maps from a simply connected domain ? ? R2∪{∞} into the unitary group U(N) with ?nite uniton number. So, it is proved that any n-uniton can be obtained from a 0-uniton by purely algebraic operations and integral transforms to solve the ?ˉ-problem via two different ways.展开更多
基金Project supported by the National Natural Science Foundation of China (No.12071106) and the Science Foundation of the Ministry of Education of China.
文摘The authors give an algebraic method to add uniton numbers for harmonic maps from a simply connected domain ? ? R2∪{∞} into the unitary group U(N) with ?nite uniton number. So, it is proved that any n-uniton can be obtained from a 0-uniton by purely algebraic operations and integral transforms to solve the ?ˉ-problem via two different ways.