概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generali...概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generalized probability density evolution equation,GDEE).对于GDEE的求解通常采用有限差分法,然而,由于GDEE是初始条件间断的变系数一阶双曲偏微分方程,通过有限差分法求解GDEE可能会面临网格敏感性问题、数值色散和数值耗散现象.文章从全局逼近的角度出发,基于Chebyshev拟谱法为GDEE构造了全局插值格式,解决了数值色散、数值耗散以及网格敏感性问题.考虑GDEE的系数在每个时间步长均为常数,推导了GDEE在每一个时间步长内时域上的序列矩阵指数解.由于序列矩阵指数解形式上是解析的,从而很好地克服了数值稳定性问题.两个数值算例表明,通过Chebyshev拟谱法结合时域的序列矩阵指数解求解GDEE得到的结果与精确解以及Monte Carlo模拟的结果非常吻合,且数值耗散和数值色散现象几乎可以忽略.此外,拟谱法具有高效的收敛性且序列矩阵指数解不受CFL (Courant-Friedrichs-Lewy)条件的限制,因此该方法具有良好的数值稳定性和计算效率.展开更多
近年来逐步发展的概率密度演化方法理论为随机动力系统的分析与控制研究提供了新的途径.过去若干年来,已经发展了一系列数值方法如有限差分法、无网格法用于求解广义概率密度演化方程.但是,针对典型随机系统,关于这一方程解析解尚比较缺...近年来逐步发展的概率密度演化方法理论为随机动力系统的分析与控制研究提供了新的途径.过去若干年来,已经发展了一系列数值方法如有限差分法、无网格法用于求解广义概率密度演化方程.但是,针对典型随机系统,关于这一方程解析解尚比较缺乏.本文以李群方法为工具,研究给出了Van der Pol振子、Riccati方程和Helmholtz振子3类典型随机非线性系统的广义概率密度演化方程解析解.这些结果,不仅可以作为检验求解广义概率密度演化方程的数值方法结果正确性的判别依据,也为概率密度演化理论的进一步深入研究提供了若干分析实例.展开更多
提出了一种新的相空间重构法(PSRM)用于求解强非线性系统的广义概率密度演化方程,并对若干典型的强非线性随机系统进行了研究,包括SDOF振子、Riccati振子、Van der pol振子和Duffing振子.所得结果验证了PSRM在求解广义密度演化方程(GDEE...提出了一种新的相空间重构法(PSRM)用于求解强非线性系统的广义概率密度演化方程,并对若干典型的强非线性随机系统进行了研究,包括SDOF振子、Riccati振子、Van der pol振子和Duffing振子.所得结果验证了PSRM在求解广义密度演化方程(GDEE)时的高效性与精确性.展开更多
文摘概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generalized probability density evolution equation,GDEE).对于GDEE的求解通常采用有限差分法,然而,由于GDEE是初始条件间断的变系数一阶双曲偏微分方程,通过有限差分法求解GDEE可能会面临网格敏感性问题、数值色散和数值耗散现象.文章从全局逼近的角度出发,基于Chebyshev拟谱法为GDEE构造了全局插值格式,解决了数值色散、数值耗散以及网格敏感性问题.考虑GDEE的系数在每个时间步长均为常数,推导了GDEE在每一个时间步长内时域上的序列矩阵指数解.由于序列矩阵指数解形式上是解析的,从而很好地克服了数值稳定性问题.两个数值算例表明,通过Chebyshev拟谱法结合时域的序列矩阵指数解求解GDEE得到的结果与精确解以及Monte Carlo模拟的结果非常吻合,且数值耗散和数值色散现象几乎可以忽略.此外,拟谱法具有高效的收敛性且序列矩阵指数解不受CFL (Courant-Friedrichs-Lewy)条件的限制,因此该方法具有良好的数值稳定性和计算效率.
文摘近年来逐步发展的概率密度演化方法理论为随机动力系统的分析与控制研究提供了新的途径.过去若干年来,已经发展了一系列数值方法如有限差分法、无网格法用于求解广义概率密度演化方程.但是,针对典型随机系统,关于这一方程解析解尚比较缺乏.本文以李群方法为工具,研究给出了Van der Pol振子、Riccati方程和Helmholtz振子3类典型随机非线性系统的广义概率密度演化方程解析解.这些结果,不仅可以作为检验求解广义概率密度演化方程的数值方法结果正确性的判别依据,也为概率密度演化理论的进一步深入研究提供了若干分析实例.