The Noether and Lie symmetries as well as the conserved quantities of Hamiltonian system with fractional derivatives are es-tablished. The definitions and criteria for the fractional symmetrical transformations and qu...The Noether and Lie symmetries as well as the conserved quantities of Hamiltonian system with fractional derivatives are es-tablished. The definitions and criteria for the fractional symmetrical transformations and quasi-symmetrical transformations inthe Noether sense of Hamiltonian system are first discussed. Then, using the invariance of Hamiltonian action under the infini-tesimal transformations with respect to time, generalized coordinates and generalized momentums, the fractional Noethertheorem of the system is obtained. Further, the Lie symmetry and conserved quantity of the system are acquired. Two exam-ples are presented to illustrate the application of the results.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11072218)
文摘The Noether and Lie symmetries as well as the conserved quantities of Hamiltonian system with fractional derivatives are es-tablished. The definitions and criteria for the fractional symmetrical transformations and quasi-symmetrical transformations inthe Noether sense of Hamiltonian system are first discussed. Then, using the invariance of Hamiltonian action under the infini-tesimal transformations with respect to time, generalized coordinates and generalized momentums, the fractional Noethertheorem of the system is obtained. Further, the Lie symmetry and conserved quantity of the system are acquired. Two exam-ples are presented to illustrate the application of the results.