In the 5-year WMAP data analysis, a new parametrization form for dark energy equation-of-state was used, and it has been shown that the equation-of-state, w(z), crosses the cosmological-constant boundary w = -1. Bas...In the 5-year WMAP data analysis, a new parametrization form for dark energy equation-of-state was used, and it has been shown that the equation-of-state, w(z), crosses the cosmological-constant boundary w = -1. Based on this observation, in this paper, we investigate the reconstruction of quintom dark energy model. As a single-real-sealarfield model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. Therefore, we reconstruct this scalar-field quintom dark energy model from the WMAP 5-year observational results. As a comparison, we also discuss the quintom reconstruction based on other specific dark energy ansatzs, such as the CPL parametrization and the holographic dark energy scenarios.展开更多
Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to con...Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.展开更多
It is well known that age influences organism mobility. This was demonstrated in vertebrates (such as mammals and birds) but has been less studied in invertebrates with the exception of Drosophila and the nematode C...It is well known that age influences organism mobility. This was demonstrated in vertebrates (such as mammals and birds) but has been less studied in invertebrates with the exception of Drosophila and the nematode Caenorhabditis elegans. Here we studied the influence of age on the mobility of the orb-weaving spider Zygiella x-notata during web construction. The orb-web is a good model because it has a characteristic geometrical structure and video tracking can be used to easily follow the spider's movements during web building. We investigated the influence of age (specifically chronological age, life span, and time till death) on different parameters of spider mobility during the construction of the capture spiral (distance traveled, duration of construction, spider velocity, spider movement, and spider inactivity) with a generalized linear model (GLM) procedure adjusted for the spider mass. The re- sults showed that neither chronological age, nor life span affected the mobility parameters. However, when the time till death decreased, there was a decrease in the distance traveled, the duration of the construction of the capture spiral, and the spider movement. The spider velocity and the time of inactivity were not affected. These results could be correlated with a decrease in the length of the silky thread deposited for the construction of the capture spiral. Spiders with a shorter time till death built smaller web using less silk. Thus, our study suggests strongly that time till death affects spider mobility during web construction but not the chronological age and thus may be a good indicator of senescence.展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.5975042)上海市自然科学基金(the Natural Science Foundation of Shanghai City of China under Grant No.02ZF14024)。
基金Supported by the Natural Science Foundation of China under Grant Nos.10705041 and 10975032
文摘In the 5-year WMAP data analysis, a new parametrization form for dark energy equation-of-state was used, and it has been shown that the equation-of-state, w(z), crosses the cosmological-constant boundary w = -1. Based on this observation, in this paper, we investigate the reconstruction of quintom dark energy model. As a single-real-sealarfield model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. Therefore, we reconstruct this scalar-field quintom dark energy model from the WMAP 5-year observational results. As a comparison, we also discuss the quintom reconstruction based on other specific dark energy ansatzs, such as the CPL parametrization and the holographic dark energy scenarios.
基金Innovation Fund of Harbin,China (No.2006RFQXG036)
文摘Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.
文摘It is well known that age influences organism mobility. This was demonstrated in vertebrates (such as mammals and birds) but has been less studied in invertebrates with the exception of Drosophila and the nematode Caenorhabditis elegans. Here we studied the influence of age on the mobility of the orb-weaving spider Zygiella x-notata during web construction. The orb-web is a good model because it has a characteristic geometrical structure and video tracking can be used to easily follow the spider's movements during web building. We investigated the influence of age (specifically chronological age, life span, and time till death) on different parameters of spider mobility during the construction of the capture spiral (distance traveled, duration of construction, spider velocity, spider movement, and spider inactivity) with a generalized linear model (GLM) procedure adjusted for the spider mass. The re- sults showed that neither chronological age, nor life span affected the mobility parameters. However, when the time till death decreased, there was a decrease in the distance traveled, the duration of the construction of the capture spiral, and the spider movement. The spider velocity and the time of inactivity were not affected. These results could be correlated with a decrease in the length of the silky thread deposited for the construction of the capture spiral. Spiders with a shorter time till death built smaller web using less silk. Thus, our study suggests strongly that time till death affects spider mobility during web construction but not the chronological age and thus may be a good indicator of senescence.